Об АВР и стоечных переключателях

Содержание

Об АВР и стоечных переключателях

АВР – очень широкое понятие. Совершенно одинаково называются устройства, которые трудно назвать одним прибором. Мы видим и однофазный модульный АВР на 16 ампер, и, совсем не похожий на него, АВР на 6 400 А. При этом, оба носят абсолютно одинаковое наименование – автоматический ввод резерва.

Как пример

Это вполне обосновано, ведь основная их задача — обеспечить резервирование электропитания ответственной нагрузки. АВРы отличаются не только токами, но и большим количеством других электрических и временных параметров, зависящих от того в какой сети и для питания каких нагрузок они предназначаются. Неизменным остается только наличие, как минимум, двух вводов и одного вывода.

С приходом в нашу жизнь импортного телекоммуникационного оборудования и зарубежных стандартов, проникло и новое словосочетание — стоечный переключатель нагрузки. Они могут быть двух основных типов: ATS (Automatic Transfer Switch) и STS (Static Transfer Switch). Статический переключатель (STS) это отдельный класс устройств, мы их касаться не будем. А вот автоматический переключатель (ATS) это и есть наш родной АВР. Тот же самый АВР, только имеющий свои особенности и специфику подключаемой нагрузки, которая располагается на тех же 19-ти дюймовых направляющих по соседству.

Типичный представитель стоечных переключателей из-за океана

Поговорим подробнее о сходствах и различиях ATS и АВР, почему это не одно и тоже? Или, может быть, одно и тоже.

Итак, какие потребители требуют надежного и бесперебойного электроснабжения?

Во многих секторах экономики технология производства или оказания услуг имеет в своей основе непрерывные процессы, перебои в которых не допустимы. Это и медицина, и промышленное производство, и добыча полезных ископаемых, и транспортировка энергоресурсов, и IT-сектор, куда же без него во время всеобщей цифровизации.

Перерывы в электроснабжении некоторого оборудования могут привести не просто к краткосрочной остановке, а вызывают каскад проблем: остановку технологического процесса, рассинхронизацию работы различных систем, потерю ценных данных. Для кого-то это прямые финансовые потери, для кого-то большие репутационные риски.

Повысить надежность электроснабжения ответственного оборудования призваны наши АВРы и ATSы. Чем же они похожи?

И тот, и другой предназначены для обеспечения питания оборудования с одним вводом от двух независимых источников питания. Оба производят переключение электропитания на резервный источник при исчезновении напряжения на основном. Это главное, что их объединяет.

Может ли АВР размещаться на 19-ти дюймовых направляющих? Конечно, может. Как говорится, мой АВР, куда хочу туда и ставлю )) Существует немало модификаций АВРов собранных в 19” корпусах, в том числе выпускаемых серийно.

Вариант серийного образца АВР для установки в телекоммуникационный шкаф.

АВР и ATS, также, могут иметь и схожие характеристики по току нагрузки, например в 32А.

Будет не верным утверждение, что ATSы устанавливают только после ИБП. Не редким является случай, когда на один из входов подается «чистое» питание от ИБП, а на второй «грязное» питание от другого источника. И тут опять они схожи.

В чем же разница?

В нюансах, в небольших нюансах, которые, в большинстве случаев, делают замену одного на другое не только не рекомендуемой, но и недопустимой.

И так, начнём с АВРов, они роднее как-то.

Поскольку мы говорим об АВР и стоечных переключателях, мы не будем рассматривать те АВРы, которые питают «дома, заводы, пароходы». Обратим внимание на те модификации, которые питают потребителей в сфере телекома, автоматизации, центров обработки данных и т.п. Они, как правило, уже адаптированы по своим электрическим и габаритным характеристикам. Но как я писал выше: есть нюансы, которые могут быть чужды ATSам, но очень нужны АВРу.

АВР должен питать нагрузку напряжением, соответствующим «норме» или, как говорят, уставкам. Часто требуется задать уставки для каждого ввода индивидуально. Уставки могут быть не только по напряжению, а также, по времени задержки возвращения на приоритетный ввод. Это требование продиктовано возможными переходными процессами при восстановлении питания в сети.

АВР с плавной регулировкой уставок по напряжению и времени

Иногда необходимо назначить приоритет какому-либо из вводов. И да, периодически этот приоритет может изменяться. Живой пример: летом более надёжен один источник питания, зимой другой (наша страна велика и слабо изучена).

АВР должен, при всех превратностях источника питания, сохранять свою работоспособность. Конечно, снижение напряжения или его исчезновение не способно навредить АВРу, а вот повышение очень даже способно. АВР должен стоически переносить всевозможные скачки напряжения в питающей сети, а также, возможные перекосы напряжения по фазам при различных нештатных ситуациях. По этой причине самые простые схемы АВР, реализованные просто на контакторах и автоматах, являются не очень надежными.

Во-первых, контакторы никогда не отключатся при повышении напряжения и продолжат питать нагрузку «неправильным» напряжением. Во-вторых, их катушки перегреются и сгорят. Бывают особо экстремальные случаи, когда вместо положенных 220В в сети может быть до 380В.

Лирическое отступление. Ранее я работал в компании, которая поставляла комплектные шкафы связи, в том числе в них были установлены и АВРы, собранные по простой схеме: два силовых контактора, реле приоритета и само собой автоматы. На одной из электроподстанций, при работах на щите собственных нужд, все контакторы на основном вводе и катушки реле приоритета ввода нам пожгли, ну и еще кое чего немножко…!

Поскольку АВР установлен в сети «грязного» питания, он должен иметь возможность отключить питание нагрузки. В том числе, при повышении напряжения на вводе и, при этом, сам не сгореть. Поэтому схемы АВРа без надежных реле контроля напряжения на входе, работающих при повышении значения напряжения до линейного, мы бы не рекомендовали применять.

Повредит ли такая устойчивость к «неприятностям» стоечному переключателю? Нет, ни сколько. Просто она ему, как правило, не нужна… Но и мешать она не будет!

Иногда АВРы могут иметь более двух вводов, могут подключать генераторы и управлять ими, что в ATSах обычно не применяется, им это просто не нужно.

Часто АВРы имеют в своем составе автоматические защитные выключатели. Они могут быть включены на входах, могут быть на выходе или там, и там одновременно. Это позволяет избежать как повреждения самого АВРа, так и полного обесточивания нагрузки. При этом надежность схемы повышается наличием у АВРа нескольких выходов, защищенных отдельными автоматами.

У стоечных переключателей коммутация вводов и нагрузки обычно производится шнурами со стандартными вилками, что сводит к минимуму возможность рукотворного КЗ. Блоки питания подключаемого оборудования, как правило, имеют в своей схеме предохранители. Все это делает защиту автоматами не очень актуальной, в большинстве случаев производители ограничиваются «термичками». Помешают ли ATSу автоматы на входах или выходе? Да тоже вряд ли.

Защита входов термопредохранителями с ручным возвратом.

В отличие от ATS, которые оптимизированы для применения в современных шкафах с телекоммуникационным и вычислительным оборудованием, АВРы не всегда применяются на такую достаточно стандартную и понятную нагрузку. Нагрузка АВРа может быть весьма разнообразной по характеру. Возможен и емкостной, и индуктивный, и резистивный ее характер, а также их всевозможная смесь.

По этой причине характер переключения АВРа стараются сделать таким, чтобы не провоцировать при переключении серьезных толчков. Самое частое «мероприятие» в этом направлении — это достаточный перерыв в электроснабжении, в течение которого вся накопленная энергия в емкостях и сердечниках нагрузки расходуется. После возобновления питания вся нагрузка подключается к сети заново и возмущения находятся в приемлемых пределах.

Данный способ переключения к тому же не требует дополнительных технических решений и финансовых затрат, обеспечивается за счет низкой скорости работы контакторов. Полученный перерыв электроснабжения в пределах 500мс оказывается вполне достаточным. В более продвинутых АВРах включение резерва может происходить и за более короткое время, но в момент токовой паузы (перехода синусоиды через нулевую точку), это также обеспечивает более плавное переключение.

Переключение между вводами на осциллографе

Более медленное переключение АВРа обеспечивает и еще один важный момент — гарантирует невозможность контакта одного ввода с другим, что чревато аварийными ситуациями. И вот в данном месте принципы работы АВРа и ATSа расходятся. Главной задачей ATSа является, как раз, обеспечить непрерывность работы подключенного к нему оборудования.

Специалисты хорошо знают о существовании объединения производителей компьютерной и другой подобной техники (CBEMA), которое решило, что нужно придерживаться правила — при полном исчезновении питания оборудование должно продолжать работать стабильно еще не менее 20мс, а далее… извините. В связи с этим про существование кривой ITIC знают все, кто так или иначе работает с серверами, коммутаторами, мультиплексорами и т.д. Вот поэтому у ATSа и стоит такая сложная задача: исключить перерыв питания оборудования длительностью более 20мс, а лучше и того менее.

А может можно и АВР заставить переключаться быстрее?

Да, конечно. Если от АВР не требуется искусственно снизить скорость переключения, то он вполне сможет переключиться со скоростью ATS. А можно ли ATS сделать более медленным переключателем? Легко! Замедлить быстрое всегда проще, чем разогнать медленное. Может эта принципиальная разница тоже не так уж принципиальна и разрешаема?

Есть ли еще какие-то различия между этими устройствами? Да есть. Но они больше связаны с привычками и предпочтениями пользователей. Энергетики и Айтишники часто по-разному понимают то, как должно выглядеть электроснабжение. Если энергетикам иногда хватает сигнальных ламп, то привыкшим к монитору хочется наблюдать за работой всего оборудования онлайн.

Разница может быть и в привычках коммутации. Многие уже привыкли к тому, что всё на свете можно соединить между собой стандартными шнурами с вилками C13/C14 на концах, без инструмента, без мороки, без маркировки 😊 АВРы не всегда обладают подобными возможностями и часто энергетики устанавливают после них еще и распределительные панели с автоматическими выключателями. Но опять же все это можно объединить в одной конструкции, главное ведь, что бы всем было привычно и удобно!

Итак, можно ли получить универсальный прибор, сочетающий в себе особенности и преимущества как АВР, так и ATS?

Получается, что в большинстве случаев можно. Хоть они и решают немного разные задачи, не так уж сильно друг от друга отличаются.

Стоечный быстродействующий АВР с регулировкой уставок и защитой автоматами

А зачем? Зачем такая унификация? Все, кто связан с обслуживанием оборудования? понимает преимущества применения унифицированного оборудования: меньше ЗИПа, проще обучить персонал, меньше производственных инструкций и они тоньше, легче проходит наработка опыта, регулярные закупки одного и того же оборудования обеспечивают лояльность поставщиков и экономию средств.

Недостатком такого унифицированного прибора можно считать большую, чем у «специализированных» собратьев, стоимость. Но в условиях рыночной экономики стоимость далеко не всегда пропорциональна сложности. Часто больше на нее влияют страна происхождения товара, количество посредников, ценовая политика производителя и (или) дистрибьютора, «богатство» потенциального потребителя и другие «рыночные» факторы.

Так что, желаю вам найти наиболее подходящее для ваших условий устройство. Наиболее полно удовлетворяющее запросам технических и коммерческих служб. А будет оно АВРом или ATSом, на самом деле, не так уж и важно!

Что такое переключение фаз, для чего он нужен и где используется?

Некоторые производственные процессы требуют непрерывного энергоснабжения. Вместе с тем состояние электрических сетей обычно далеко от идеального. Нередки случаи пропадания одной из питающих фаз. В такой ситуации необходимо мгновенно запитаться от другого, оставшегося под напряжением провода. Для этого потребуется переключатель фаз.

Назначение фазного переключателя

Фазный переключатель — это электротехническое устройство, предназначенное для подключения ответственных потребителей электроэнергии. Под ответственными потребителями подразумеваются приборы, которые должны непрерывно работать 24 часа в сутки. Например, оборудование серверных, автоматика газовых котлов или системы видеонаблюдения на охраняемых объектах.

Подключение оборудования через переключатель фаз

Существует 2 основные категории переключателей фаз:

  • ручные (механические);
  • автоматические.

Ручной переключатель фаз представляет собой многопозиционный кулачковый коммутатор. Он может устанавливаться не только на дин рейку, но и на дверцу шкафа управления. По сути это кнопка, позволяющая усилием руки самостоятельно переключить питание потребителя с одной линии на другую. Такие приборы дешевые и простые в понимании. Но они не способны работать без человека.

Ручной модульный переключатель

Автоматические модели в присутствии человека не нуждаются. В них установлен микроконтроллер, отслеживающий напряжения входных фаз. На верхние клеммы прибора подключается 4 провода: 3 фазы и ноль. Снизу снимается 2 провода: 1 фаза и ноль.

Во время работы прибор подключает одну из входящих фаз (например, L1) на выходную клемму. Если напряжение в фазе L1 по каким-либо причинам выходит за допустимые пределы, то к выходу подсоединяется фаза L2. Если напряжение выходит за пределы и в L2, то подключается L3.

Трехфазный переключатель фаз в схеме

Сферы применения

АПФ рассчитан на питание электроприборов на 220 В. Этот прибор имеет одну выходную фазу, поэтому он непригоден для работы с трехфазными потребителями электроэнергии.

Однако это не уменьшает количество сфер, в которых используется АПФ. Среди них выделяются следующие:

  • маломощные холодильники медицинских лабораторий и аптек;
  • системы видеонаблюдения на охраняемых объектах;
  • любая медицинская техника, поддерживающая жизнь человека;
  • автоматика бытовых газовых котлов;
  • системы вытяжки и вентиляции на опасных производствах.

Дополнительная информация. В момент запуска мощных электрических двигателей и блоков питания в электросети происходит кратковременная просадка напряжения. Производители переключающих устройств оснащают свои приборы фильтрами по времени, позволяющими им быть невосприимчивыми к просадкам и пусковым токам от мощного оборудования.

Выбор переключателя

На рынке представлен широкий ассортимент фазных переключателей. Выбирать их следует исходя из 4 критериев:

Устройство с семисегментными индикаторами

  1. Максимальный рабочий ток. От этого параметра зависит насколько мощные приборы можно подключить к выходу переключателя. Например, для обычной, не сильно нагруженной электроприборами квартиры подойдет автоматический переключатель на 16 А.
  2. Функция регулировки верхнего и нижнего пределов входного напряжения. Дешевые модели не обладают данными регуляторами. В них переключение происходит при заданном производителем уровне входного напряжения. В дорогих моделях можно самостоятельно настроить, при каком вольтаже в L1 произойдет переход на L.
  3. Способ индикации состояния. Простые модели переключателей оснащены несколькими светодиодами. Они способны гореть или мигать, в зависимости от состояния прибора и входного напряжения. Более профессиональные модели оснащаются семисегментными индикаторами, способными отображать величину напряжения с точностью до 1 %.
  4. Функционал. Простые модели выполняют минимальный набор функций. Они просто отслеживают входные напряжения и производят соответствующие переключения. Продвинутые приборы способны на большее. В них можно настроить пороги срабатывания, время на переключение и возврат на основную фазу.

Важно! Основная фаза — это термин, свойственный некоторым моделям переключателей. В меню подобных приборов можно настроить, какая из входных фаз будет считаться основной. При переключениях АПФ отдает предпочтение основной фазе.

Настройки прибора

Простые модели имеют минимальный набор настроек. Они не поддаются регулировке покупателем. Алгоритм их работы установлен производителем и не подлежит изменению. Сложные дорогие модели, напротив, имеют множество настраиваемых параметров.

Нижний предел напряжения

Этот параметр определяет, при какой величине входного напряжения произойдет переключение на запасную фазу. Например, если напряжение в фазе A больше 180 В, то потребитель подключен к фазе A. Если меньше, то происходит переход на фазу B.

В простых моделях переключателей значение 180 В установлено по умолчанию. В моделях посерьезнее оно поддается регулировке, и минимальный предел напряжения можно установить на 120-200 В.

Настройка прибора обычно осуществляется с помощью регуляторов под крестовую отвертку. Их достаточно просто покрутить. Отсюда народное название подобных регуляторов «крутилка». В других образцах переключателей используются кнопки. Принципиальной разницы в работе этих регуляторов нет. Поэтому выбор — это вопрос удобства использования.

Регуляторы для установки пределов напряжения

Верхний предел напряжения

Настройка верхнего предела напряжения необходима для той же задачи, что и нижнего. Но в случае с верхним пределом осуществляется защита потребителей от перенапряжения.

Если напряжение в текущей фазе становится больше допустимого, то прибор автоматически переходит на другую фазу. Например, если напряжение в фазе A превысило значение 250 В, то АПФ переключится на фазу B с нормальным напряжением 230 В.

Время возврата

Время возврата на приоритетную (основную) фазу также поддается настройке с помощью регуляторов или кнопок. Этот параметр определяет, через сколько секунд после нормализации напряжения в основной фазе АПФ снова вернется на нее.

Например, в сети по какой-то причине происходит длительная просадка напряжения в одной из фаз. АПФ переходит на запасную. Через некоторое время вольтаж в основной фазе принимает допустимое значение. Но переключающее устройство выжидает. И только после времени возврата снова возвращается на нормализовавшуюся основную фазу.

Электронный переключатель фаз ПЭФ-319

Время возврата необходимо, чтобы исключить постоянные ложные переключения устройства. Тем самым увеличивается срок эксплуатации внутренних реле и уменьшается риск повреждения нагрузки.

Эта настройка сильно варьируется от типа потребителя. Например, для холодильников рекомендуется устанавливать время возврата порядка 3-10 мин. Для ламп накаливания достаточно 1-2 мин.

Время включения

Нередко напряжение пропадает одновременно в 3 питающих фазах. В таком случае прибор переходит в выключенное состояние и не реагирует на внешние факторы.

Включение АПФ произойдет после появления напряжения хотя бы в одном питающем проводе. Однако на выходе электричество появится не сразу. АПФ выждет некоторое время автоматического повторного включения и только после этого снова замкнет контакты внутренних реле и запитает потребителей.

Время АПВ настраивается с передней панели устройства. Эта функция по принципу действия похожа на время возврата.

Типовая схема подключения

Разные модели переключателей фаз имеют отличное расположение клеммников для проводов. Однако схема их подключения остается неизменной:

Схема подключения АПФ

  1. На вход АПФ подключается 3 фазных провода и 1 нулевой. Фазировка в данном случае значения не имеет. Главное, не запутаться между фазными и нулевым проводами. Для этого на корпусе прибора предусмотрена соответствующая маркировка L1, L2, L3 и N.
  2. Выходные фазные клеммы объединяются в одну точку с помощью перемычки. Она поставляется в комплекте с прибором и при необходимости устанавливается своими руками. С нее снимается выходное напряжение, идущее на нагрузку. Там же располагается клемма для нулевого проводника нагрузки.
  3. Устройство АПФ не предназначено для защиты сети от токов короткого замыкания. Поэтому перед ним обязательно устанавливается трехфазный автоматический выключатель.
  4. Необходимо соблюдать общие рекомендации по электромонтажу. Установка прибора осуществляется со снятием напряжения. Стоит помнить про маркировку проводов. Желательно, чтобы рядом был наблюдающий, способный оказать ПМП при электротравме.

Важно! АПФ не предназначены для токов коротких замыканий. В них нет соответствующих защит. Перед переключателем обязательно устанавливается плавкая вставка или автомат. Его номинальный ток выбирается так, чтобы он был меньше, чем максимальный рабочий ток АПФ.

Настройка АПФ после первого включения

Настройки прибора зависят от характеристик электрической сети. После первого включения в АПФ необходимо установить следующие параметры:

Регулировка переключателя фаз

  • нижний порог напряжения срабатывания;
  • верхний порог;
  • время возврата;
  • время включения;
  • приоритетную фазу (если прибор поддерживает выбор);

Особенности эксплуатации переключателя

Если прибор установлен в электрощит впервые, то некоторое время уйдет на его точную настройку и наладку. Особенно это относится к домам со старыми электросетями, где напряжение в розетке способно сильно варьироваться в зависимости от времени года и суток.

В зимний период большинство жителей частных домов активно используют электрические обогреватели. Поэтому стоит ожидать существенных просадок напряжения. Они отразятся на работе переключателя. АПФ будет чаще щелкать реле, чтобы подобрать фазу с самым подходящим напряжением.

Частые переключения отмечаются и в ночное время суток. Жильцы ложатся спать, потребление электроэнергии заметно снижается. Соответственно, сетевое напряжение возрастает. Прибор так же начинает переключаться в поисках оптимальной фазы.

Реле — устройство электромеханическое. Во время работы оно создает характерные щелчки. Ложась спать, никому не хочется слушать звук переключения реле. Поэтому этот прибор рекомендуется устанавливать подальше от жилых комнат.

Обзор моделей фазных переключателей

АПФ получится найти не в каждом магазине электротоваров. Однако многие производители приборов защиты занимаются их производством. Ниже приведен краткий обзор популярных моделей.

Производитель и модель Особенности Примерная цена
Евроавтоматика PF 431 Электронный прибор с базовым набором функций. Не имеет кнопок и регулировок. Максимальный коммутируемый ток 16 А. Собственная потребляемая мощность до 1,6 Вт. В щите устанавливается на din рейку. 3 тыс. р.
Евроавтоматика PF-451 Модель оснащена 3 регуляторами: нижний и верхний пороги напряжений срабатывания, задержка отключения по нижнему порогу. Коммутируемый ток 16 А. Есть возможность использования в цепях постоянного тока 24 В с неиндуктивной нагрузкой до 16 А. 4 тыс. р.
DigiTOP PS-63A Максимальный рабочий ток достигает 63 А. Прибор оснащен тремя отдельными вольтметрами для каждой фазы. Используя DigiTOP, можно наладить работу от генератора и основной питающей сети. 4 500 р.
ABB OT40F3C Ручной 3-позиционный переключатель с крайне компактными размерами (вес 250 г). Максимальный рабочий ток 23 А. Подходит для реверсивного управления двигателем. 5 700 р.
ООО «НОВАТЕК-ЭЛЕКТРО» ПЭФ 319 АПФ оснащен светодиодами состояния фаз, вольтметром на семисегментных индикаторах и 4 регуляторами для настройки. Минимальное рабочее напряжение 120 В. Максимальный рабочий ток ПЭФ-319 составляет 16 А. Есть усиленная версия ПЭФ-319-30, рассчитанная на 30 А. 3 300 р.
ООО «НОВАТЕК-ЭЛЕКТРО» ПЭФ 301 Модель оснащена 4 регуляторами. Диапазон настройки минимального порога срабатывания: 160-210 В. Предельная токовая нагрузка до 16 А. 3 100 р.

Рубильник реверсивный ABB OT40F3C

Покупать ли фазный переключатель

Перед приобретением следует определиться, для чего нужен АПФ конкретно в вашей ситуации. В большинстве случаев этот дорогой прибор можно заменить дешевым пакетным выключателем на 2 положения.

Если вы являетесь жильцом обычного многоквартирного дома, то АПФ послужит пустой тратой денег. Вряд ли в квартире найдутся электроприборы, которые при отключении питания создадут катастрофические убытки. Плюс не совсем понятно, как на подобные переделки электрощита отреагирует электроснабжающая организация. Ведь переключатель придется ставить до счетчика электроэнергии.

Если вы владеете небольшим бизнесом и у вас есть однофазный холодильник (или печь), который должен 24/7 поддерживать строгую температуру, то подобный прибор уже будет нелишним. Но опять же вам потребуется полноценный ввод с 3 фазами и напряжением 380 В.

Иногда люди приобретают переключатели фаз, чтобы получить стабильное электроснабжение на даче или в частном доме. К одному входу АПФ подключается штатная сеть электроснабжения, а к другому генератор.

Автоматический переключатель фаз позволяет организовать бесперебойное электроснабжение потребителей на 220 В. При этом сам прибор в идеале требует полноценное питание от сети 380 В. Возможен режим работы и от 2 питающих проводов.

В зависимости от задачи подбирается ручной или автоматический переключатель. При настройке автоматической модификации придется учесть верхний и нижний пределы срабатывания прибора, а также его временные характеристики.

Типовые схемы подключения АВР — определение, принцип работы

Когда электричество исчезает даже на несколько минут, предприятия могут понести колоссальные убытки. А для больниц такая ситуация просто опасна. В большинстве объектах необходимо обеспечивать бесперебойное электроснабжение. Для этого его следует подключить к нескольким источникам электроэнергии. Специалисты при таком подходе используют АВР.

Типовые схемы подключения АВР - определение, принцип работы

Что такое АВР и его назначение

Автоматический ввод резерва или АВР – это система, относящаяся к электрощитовым вводно-коммутационным распределительным устройствам. Основной целью АВР является быстрое подключение нагрузки на резервное оборудование. Такое подключение необходимо, когда появляются проблемы с подачей электричества от главного источника электроэнергии. Система следит за напряжением и током нагрузки и таким образом обеспечивает автоматическое переключение на функционирование в аварийном режиме.

АВР необходимо, если имеется запасной источник питания (дополнительная линия или еще один трансформатор). Если при аварийной ситуации будет отключен первый источник, вся работа перейдет на запасной. Использование АВР позволит избежать неприятностей, вызванных перебоями подачи электроэнергии.

Требования к АВР

Типовые схемы подключения АВР - определение, принцип работы

Основные требования к системам АВР заключаются в следующем:

  • Она должна иметь высокую скорость восстановления подачи электроэнергии.
  • В случае, когда основная линия перестает работать, установка должна обеспечить подачу электроэнергии потребителю от запасного источника.
  • Действие осуществляется один раз. Нельзя допускать несколько включений и отключений нагрузки, например, из-за короткого замыкания.
  • Выключатель основного питания должен включаться с помощью автоматики системы автоматического ввода резерва. До тех пор, пока не будет подано запасное электропитание.
  • Система АВР должна производить контроль корректного функционирования цепи управления резервным оборудованием.

Принцип работы автоматического ввода резерва

Основой работы АВР является контроль напряжения в цепи. Контроль может осуществляться как при помощи любых реле, так и при помощи микропроцессорных блоков управления.

Справка! Реле контроля напряжения (также называют вольт контроллер) отслеживает состояние электрического потенциала. В случае перенапряжения в сети вольт контроллер мгновенно обесточит сеть.

Контактная группа, контролирующая наличие электроэнергии, играет основную роль в системе АВР. В нашем случае это реле. Когда напряжение пропадает, управляющий механизм получает сигнал и переключается на питание генератора. Когда основная сеть начинает работать штатно, этот же механизм переключает питание обратно.

Типовые схемы подключения АВР - определение, принцип работы

Основные варианты логики функционирования АВР

Система АВР с приоритетом первого ввода

Суть работы системы АВР этого типа заключается в том, что нагрузка изначально подключается к источнику электроэнергии № 1. Когда случается перегрузка, короткое замыкание, обрыв фазы или другая аварийная ситуация, нагрузка переходит на запасной источник. Когда подача электричества на первом восстановлена до нормальных параметров, нагрузка автоматически переключается обратно.

Типовые схемы подключения АВР - определение, принцип работы

Система АВР с приоритетом второго ввода

Логика работы та же, что и у предыдущего типа системы. Разница в том, что нагрузку подключают к вводу 2. В случае аварии напряжение переходит на ввод 1. После того, как напряжение на втором источнике будет восстановлено, напряжение автоматом переключится на него.

Читайте также: Как рассчитать стоимость для оплаты электроэнергии по счетчику и по нормативу

Система АВР с ручным выбором приоритета

Схема системы АВР с ручным выбором приоритета является более сложной, чем рассмотренные выше. В этом случае на системе АВР будет установлен переключатель, с помощью которого можно регулировать выбор приоритета АВР.

Типовые схемы подключения АВР - определение, принцип работы

Система АВР без приоритета

Эта АВР функционирует от любого источника питания. В случае, когда напряжение идет на ввод 1, а на нём происходит аварийная ситуация, нагрузка переходит на ввод 2. После стабилизации работы первого ввода механизм продолжает работать на вводе 2. Когда произойдет авария на втором, напряжение автоматом переключится на первый.

Основные типы шкафов и щитов АВР

Щит АВР на два ввода на контакторах (пускателях)

Установка шкафа АВР на пускателях – это самый простой способ создать резервное питание. Этот шкаф — наиболее бюджетный вариант установки АВР. Как правило, в шкафах АВР на 2 ввода используют автоматические выключатели. Они нужны для того, чтобы защитить систему от перегрузок и замыканий. Защиту от перекоса фаз и скачков напряжения осуществляет реле напряжения. Кроме этого, реле становятся «мозгом» всей системы автоматического ввода резерва.

Шкаф АВР с двумя контакторами работает по следующему принципу. Два контактора подключены к первому и второму источнику соответственно. Первый контактор замкнут, а у второго цепь разомкнута. Электричество идет через ввод № 1.

Типовые схемы подключения АВР - определение, принцип работы

Внимание! В случае, когда у АВР логика приоритета второго ввода, ситуация будет обратной: цепь второго контактора замкнута, а первого – разомкнута.

Если подача тока на первом вводе пропадет, а на втором будет нормальной, то контакты второго пускателя замкнутся, и механизм переключится на него. Как только на первом вводе напряжение восстановится – схема перейдет в первоначальное состояние.

При помощи реле здесь можно отрегулировать время задержки, с которой будет осуществляться переключение с одного источника на другой. Оптимальная задержка – от 5 до 10 секунд, она позволит обезопасить систему от ложного срабатывания АВР. Ложное срабатывание может произойти, например, в случае просадки напряжения.

Справка! Для того чтобы оба контактора не могли включиться одновременно, в щитах АВР используют дополнительные механические блокировки.

Щит АВР на 2 ввода на автоматах с моторным приводом

Они лучше всего подходят для использования при номинальных токах 250-6300А. Когда ток на основном вводе пропадает, специальные электромоторы получают сигнал и взводят пружины запасного выключателя, переключая нагрузку на другой ввод.

Читайте также: Как устроен электрический аккумулятор, его принцип работы, виды, назначение и основные характеристики

Основные плюсы шкафов АВР на моторе:

Типовые схемы подключения АВР - определение, принцип работы

  • Ресурс по перезагрузкам намного больше, чем у АВР с пускателями;
  • Подключить шины к такому автомату проще;
  • Щит АВР на автоматах может работать также и в ручном режиме. В таком случае включить или отключить автомат можно с помощью специальных кнопок.

Суть функционирования этого щита заключается в следующем. Если на основном вводе случилась авария, автоматика проверяет, готов ли ввод 2 для подачи тока. Если все в порядке, то пружина автомата второго ввода взводится, и подается электроэнергия. Когда ввод № 1 снова может работать в штатном режиме, весь процесс идет в обратном порядке, подавая электроэнергию на основной ввод.

На щитах с моторным приводом, как правило, устанавливается лицевая панель, на которой можно отслеживать все изменения в АВР. А для предотвращения одновременного срабатывания двух автоматических выключателей нередко используют электрические блокировки.

Щит АВР на 3 ввода

Эти шкафы являются одними из самых надежных источников питания. Все потому, что в АВР на 3 ввода есть две запасных линии, что обеспечивает максимально низкую возможность отключения питания на объекте. Обычно такие шкафы АВР используют при взаимодействии с потребителями первой категории надежности электроснабжения. К ним относятся такие объекты, обесточивание которых влечет за собой угрозу для жизни людей или безопасности государства, а также может причинить большой материальный ущерб.

Типовые схемы подключения АВР - определение, принцип работы

Щиты АВР на 3 ввода работают по двум наиболее распространенным схемам.

Первая – это когда одна секция потребителей питается от трех независимых линий. Тогда можно установить приоритет для одного из вводов, а можно работать без приоритета. Нагрузка будет подключена туда, где нормализовано напряжение.

Вторая схема функционирования щита АВР на 3 ввода состоит в том, что две секции потребителей работают от двух линий, которые независимы друг от друга. Третий ввод подключается к запасному источнику питания. В случае аварийной ситуации он подключается к одной из секций.

Справка! Подобные щиты могут быть оснащены и механической блокировкой, и автоматами с электроприводами.

Вводно-распределительное устройство с АВР

Устройство используется для приема и учета электричества, а также для защиты зданий от короткого замыкания или перегрузки. Шкафы ВРУ с АВР используют в сетях переменного тока с напряжением 380/220В с частотой 50Гц.

Шкафы ВРУ с автоматическим вводом резерва представляют собой отдельную панель, где функционирует как автоматическое, так и ручное переключение, а также происходит учет электроэнергии, которая потребляется на каждой линии.

Шкафы ВРУ состоят из:

  • Блока введения и вывода кабеля.
  • Блока автоматического ввода резерва.
  • Блока, где происходит учет потребляемого электричества.

Также они могут быть многопанельными. Тогда дополнительно в них будут установлены противопожарные панели, распределительные панели и другие, в зависимости от требований к электроустановке.

Читайте также: Что такое однолинейная схема электроснабжения и какие требования для её проектирования

Щит АВР для запуска генератора

Дополнительное питание от генератора электроэнергии позволяет почти полностью избежать полного обесточивания. Это один из самых надежных способов создать бесперебойную подачу электричества. Шкаф АВР в этом случае необходим, чтобы обеспечить автоматическое функционирование генератора по заданному алгоритму.

Типовые схемы подключения АВР - определение, принцип работы

Шкаф АВР для генератора может работать и в автоматическом, и в ручном режиме. Изначально в нём установлен автоматический режим, но вы можете его легко изменить.

Важно! Для корректной работы связки АВР-генератор последний должен иметь возможность запускаться автоматически.

Когда на вводе 1 прекращается подача электричества, система АВР отправит сигнал для запуска генератора. После того, как генератор начнет нормально функционировать, и напряжение на втором вводе достигнет нужного уровня, механизм переключится на резервный источник. Благодаря установленному реле времени второй ввод не будет подключен к генератору, пока он не начнет работать в штатном режиме. Как только на основном (первом) источнике будет восстановлена подача электроэнергии, генератор будет отключен, а питание переключится на ввод 1.

Типовые схемы подключения АВР - определение, принцип работы

В ручном режиме работы включение и отключение генератора происходит за счет нажатия специальных кнопок.

БУАВР

Блок управления автоматического включения резерва работает в составе устройств АВР и осуществляет переключение с одного источника на другой. Также он контролирует состояние линий, управляет контакторами и магнитными пускателями, моторами и запускает электрогенератор.

Типовые схемы подключения АВР - определение, принцип работы

БУАВР в течение определенного периода измеряет напряжение в фазах и обрабатывает результаты в реальном времени. Благодаря этому он может определять среднее значение напряжения в каждой фазе. БУАВР имеет повышенную устойчивость к перенапряжению.

АВР Zelio Logic

Система автоматического ввода резерва с релейной логикой переключения между источниками. Используется программируемое реле Zelio Logic. Одним из основных преимуществ выбора такого реле является европейское качество при относительно низкой стоимости. Также реле Zelio Logic отличается довольно простым программированием. Для корректного использования достаточно базовых знаний. Также реле имеет графический интерфейс, что серьезно упрощает взаимодействие.

Типовые схемы подключения АВР - определение, принцип работы

АВР ATS

АВР ATS — это шкафы АВР с интеллектуальными микропроцессорными блоками. На данный момент такой вариант шкафа АВР является самым дорогостоящим на рынке. Наиболее востребованы они на промышленных предприятиях, где важно обеспечить надежную бесперебойную работу сети и максимально быстрое переключение на альтернативный источник питания. Некоторые АВР ATS переключаются с одного ввода на другой буквально за две секунды. Также таким блокам не нужно дополнительное питание. Они работают при 480В. Можно выбрать наиболее удобный алгоритм, а также автоматический или ручной режим.

Типовые схемы подключения АВР - определение, принцип работы

Похожие статьи:

УЗИП — что это такое, описание и схемы подключения в частном доме

Для чего нужен магнитный пускатель и как его подключить

Что такое импульсное реле — схема подключения для управления освещением

Что такое диодный мост, принцип его работы и схема подключения

Что такое выпрямитель напряжения и для чего нужен: типовые схемы выпрямителей

Принцип работы и схема подключения теплового реле

Источник https://habr.com/en/post/586678/

Источник https://220.guru/elektrooborudovanie/avtomaty-uzo/pereklyuchatel-faz.html

Источник https://odinelectric.ru/elektrosnabzhenie/tipovye-shemy-avr

Понравилась статья? Поделиться с друзьями: