Прессовые формовочные машины для литейного производства с доставкой по России, Беларуси, Казахстану и другим странам СНГ

Содержание

Транспортное оборудование литейных цехов

В литейных цехах широко применяют разнообразные машины непрерывного транспорта для перемещения сыпучих и кусковых грузов (песка, глины, угля, формовочных и стержневых смесей, оборотной смеси и т.д.) непрерывным потоком без остановок для их загрузки и разгрузки. В качестве непрерывного транспорта используют транспортирующие машины с тяговым органом, в которых груз перемещается вместе с последним, и без тягового органа. К первым относятся конвейеры ленточные, пластинчатые, скребковые и элеваторы, ко вторым – гравитационные устройства, качающиеся (инерционные и вибрационные) и винтовые конвейеры, пневматические и гидравлические транспортные устройства.

Ленточные конвейеры

Ленточные конвейеры (рис. 16.1) имеют тяговый орган 2, выполненный в виде бесконечной ленты, служащей одновременно и несущим элементом конвейера; приводную станцию (электродвигатель, редуктор), приводящую в движение приводной барабан 1; натяжную станцию с хвостовым барабаном 5 и натяжным устройством 6; опорные ролики 3 на рабочей ветви ленты и поддерживающие ролики 7 на холостой ветви ленты; загрузочное устройство 4 и устройство для очистки ленты 9. Все элементы конвейера смонтированы на металлической раме 8.

Схема устройства ленточного конвейера

Ленточные конвейеры – наиболее распространенный вид транспортирующих машин литейных цехов. Они бывают горизонтальные, наклонные и вертикальные. Конвейеры, установленные в вертикальной плоскости, называют элеваторами.

Для увеличения производительности конвейера часто опоры под ленту выполняют таким образом, что лента под действием силы тяжести материала, расположенного на ней, принимает форму желоба (рис. 16.2).

Ленточный конвейер и Плужковые сбрасыватели

Угол наклона конвейера к горизонту зависит от угла естественного откоса материала в движении. Обычно угол наклона конвейера принимают на 7-10° меньше угла трения груза о полотно. Так, для гладкой ленты предельный угол наклона ленточного конвейера к горизонтали р принимают равным 20-22° для формовочной смеси и сырой глины и 17-18° для сухих формовочных материалов.

Скорость движения ленты для транспортирования формовочных материалов и смесей находится в интервале 0,8-1,25 м/с, а для конвейеров с разгрузочными плужками – до 0,5 м/с.

В ленточных конвейерах применяют ленты прорезиненные текстильные, стальные, текстильные армированные стальными тросами. В конвейерах литейных цехов ширина ленты обычно составляет 800-1200 мм.

Наиболее распространено применение текстильной прорезиненной ленты, состоящей из нескольких слоев хлопчатобумажной ткани. Поверхность ленты покрыта слоем резины, предохраняющей ткань от истирания. Толщина резинового слоя на рабочей стороне 3-6 мм, а на нерабочей – 2 мм.

Для конвейерных лент широко используют искусственные ткани из перлоновых, нейлоновых и лавсановых нитей.

Для транспортирования материалов через сушильные и нагревательные печи применяют ленты, изготовленные из стекловолокна с покрытием кремнийорганическим каучуком, или прорезиненные тканевые с покрытием из стекловолокна. Концы лент соединяют вулканизацией или заклепками.

Транспортируемый материал обычно загружают на ленту через воронку. Чтобы материал не просыпался, в зазор между воронкой и лентой закрепляют уплотнение из полос прорезиненной ленты. Материал разгружается в момент огибания лентой приводного барабана (в конце конвейера), либо в средней части конвейера с помощью плужковых сбрасывателей (рис. 16.3). Плужковые сбрасыватели бывают односторонние (рис. 16.3, а) и двухсторонние (рис. 16.3, б) или. Недостаток плужкового способа разгрузки – повышенное изнашивание ленты. Приводом подъема и опускания плужков обычно служит пневмоцилиндр или диафрагменный толкатель с электропневматическим управлением. В рабочем положении плужок прижимается к ленте резиновой полосой, закрепленной в его нижней части болтами. Вместо опорных роликов в зоне действия плужка под лентой монтируется сплошной металлический стол.

Схемы устройств для натяжения ленты

Для обеспечения постоянного сцепления ленты с приводным барабаном в ленточных конвейерах применяют натяжное устройство винтового или грузового типа (рис. 16.4). Ось натяжного барабана натяжного устройства винтового типа (рис. 16.4, а) опирается на подшипники, установленные в корпусах 1, движущихся между неподвижными направляющими 2 с помощью винтов 3. Недостатком винтовых натяжных устройств является трудоемкость натяжения ленты. Натяжное устройство грузового типа (рис. 16.4, б) более совершенно, так как натяжение ленты происходит автоматически под действием силы тяжести груза.

Тележечные конвейеры

Тележечные литейные конвейеры служат основным транспортным устройством поточно-механизированных и автоматических формовочно-выбивных линий (рис. 16.5). По характеру трассы тележечные конвейеры могут быть горизонтально замкнутые и вертикально замкнутые непрерывного движения. Литейный конвейер, у которого движение периодическое, пульсирующее, называют шаговым. Привод таких конвейеров периодически передвигает всю замкнутую цепь платформ на заданный шаг. Тяговым органом в тележечном конвейере является пластинчатая втулочно-роликовая цепь (рис. 16.6).

Тележечный литейный конвейер

У тележечного конвейера (рис. 16.5) тяговая цепь 1 жестко соединена с тележкой 2, которая передвигается на безребордных катках 5 по рельсам 6. На тележке горизонтально замкнутого конвейера смонтированы секции роликового конвейера 3, позволяющие безостановочно переталкивать на них грузы со стационарных сборочных конвейеров. Для предупреждения схода тележек с рельсов на скруглениях пути в данной конструкции вместо ходовых катков с ребордами, создающими большие сопротивления передвижению, применены специальные направляющие ролики 7, смонтированные на оси цепи, соединенной с тележками и перемещающиеся между направляющими 8. С целью защиты направляющих роликов 7 от попадания па них смеси к торцам тележек приваривают фартуки 4, перекрывающие друг друга.

Втулочно-роликовая цепь

Втулочно-роликовая цепь (рис. 16.6) собирается из штампованных стальных пластин, внутренних 1 и внешних 2, валиков 3 и свободно надетых на них роликов 4. Наличие ролика позволяет уменьшить сопротивление при прохождении цепей по звездочкам и на поворотах в горизонтальной плоскости. Кроме рассмотренных непрерывно движущихся конвейеров применяют также шагающие (горизонтально замкнутые и вертикально замкнутые).

Схема шагающего вертикально замкнутого литейного конвейера

На рис. 16.7 изображена принципиальная схема шагающего вертикально замкнутого литейного конвейера. Он состоит из верхней ветви 2, расположенной на перекрытии второго этажа, и нижней ветви 6. По этим ветвям перемещаются формы 3 и опоки. Передача опок или форм с верхнего этажа 8 на нижний и наоборот осуществляется двумя вертикальными гидравлическими подъемниками 4 и 7 на каретках 1 и 5.

Шагающий конвейер (поперечный разрез)

Конвейер (рис. 16.8) состоит из неподвижной металлоконструкции 3 и подвижной внутренней рамы 4. Подвижная рама покоится на роликах 6 гидравлических домкратов 5, размещенных по длине конвейера с шагом, равным шагу конвейера. Формы 1 находятся на поддонах 2, которые опираются на металлоконструкцию 3. Для направления рамы 4 при ее движении служат направляющие ролики 7, установленные на металлоконструкции 3.

Передвижение форм 1 начинается с подъема подвижной рамы 4 на высоту на 10-15 мм большую, чем зазор к по всей длине конвейера. Затем с помощью гидравлического толкателя (на схеме не показан) подвижная рама 4 вместе с поддонами 2 и формами 1 передвигается на один шаг конвейера по роликам 6. После этого рама опускается и, возвращаясь на один шаг, занимает исходное положение. При следующем шаге все движения повторяются.

Гидропривод шагающего конвейера обеспечивает замедленный ход в начале и конце движения, и быстрый возврат подвижной рамы в исходное положение.

Пластинчатые конвейеры

Пластинчатые конвейеры применяют для транспортирования крупнокусковых, тяжелых и горячих грузов. Основным преимуществом этих конвейеров является хорошая сопротивляемость изнашиванию. Однако вследствие относительно высокой стоимости, сложности изготовления и требования тщательного ухода за ними из-за большого числа шарнирных соединений эти конвейеры используются только в самых необходимых случаях. Тяговым элементом конвейера служат одна или две цепи, грузонесущим – настил (полотно).

Схема пластинчатого конвейера

Пластинчатый конвейер (рис. 16.9) имеет две замкнутые тяговые цепи 1 с укрепленными на них поперечными пластинами 2, образующими сплошную чешуйчатую ленту, несущую загруженный на нее материал. Цепи приводятся в движение на одном конце конвейера приводными звездочками 3, получающими вращение от электродвигателя через редуктор. На другом конце конвейера цепи огибают звездочки 4, которые соединены с натяжным устройством винтового типа. Скорость движения настила обычно до 1 м/мин.

Пластины конвейера изготовляют плоскими или волнистыми из листовой стали (толщиной 4-10 мм). При большой производительности конвейера пластины снабжают боковыми вертикальными бортами; во избежание просыпания материала пластины перекрывают друг друга. Направление движения настила должно быть только односторонним, чтобы груз не мог попасть между пластинами. Волнистыми пластины делают для придания им большей жесткости и для возможности транспортирования материала под большим углом наклона конвейера (25-30°). Чаще всего пластинчатые конвейеры используют там, где применение ленточных ограничено, например, для перемещения горячих отливок в термообрубное отделение.

Схема скребкового конвейера

Скребковый конвейер (рис. 16.10) – разновидность обычного пластинчатого конвейера. Он отличается от пластинчатого специальными скребками 3, закрепленными на пластинчатой ленте. При движении ленты конвейера скребки опираются на желоб 6 днища бункера или емкости, захватывают материал и транспортируют его по прямой или наклонной плоскости.

Материал загружается через люки 5 в дне или в конце желоба. Конвейер может иметь две тяговые цепи или одну при малой производительности и небольшой длине перемещения. Скребковыми конвейерами материал может перемещаться как верхней, так и нижней ветвями, а в необходимых случаях и обеими. Скребковые пластинчатые конвейеры применяют для удаления шлама из отстойников в сооружениях для очистки воды или в системах гидравлической регенерации формовочных смесей.

Подвесные конвейеры

Подвесные конвейеры используют для непрерывного или периодического транспортирования различных штучных грузов. Например, горячие отливки после выбивки перемещаются в таре подвесного конвейера в термообрубное отделение. Стержни после изготовления на машинах транспортируются для последующей окраски, сушки и хранения. Подвесные конвейеры применяют в отделениях очистки и отделки отливок.

Подвесной конвейер

Подвесной конвейер (рис. 16.11) состоит из замкнутого тягового органа 3 с каретками 2, служащими для поддержки тягового органа и закрепления подвесок 4. Катки кареток с помощью тягового органа перемещаются по замкнутому подвесному пути 1. В качестве тягового органа применяют цепи всех типов (пластинчатые, сварные, литые и т.д.), а также стальные канаты. Иногда цепи выполняют двухшарнирными, оси которых расположены в двух перпендикулярных плоскостях, что обеспечивает большую гибкость цепи во всех направлениях. Трасса подвесного конвейера может быть горизонтально замкнутой или иметь сложный профиль с подъемами, спусками и поворотами. Эти конвейеры просты и надежны в эксплуатации.

Схемы подвесных конвейеров

Подвесные конвейеры (рис. 16.12, а, б) бывают грузонесущие, в которых каретки с подвесками для грузов постоянно соединены с цепью, и толкающие, у которых каретки с подвесками для грузов не имеют постоянного соединения с цепью и движутся с помощью кулачков, закрепленных на цепи. Цепь с каретками и кулачками движется по вспомогательному подвесному пути, а тележки с грузом по основному грузовому пути.

Устройство подвесного толкающего конвейера

В подвесных толкающих конвейерах, наиболее легко поддающихся автоматизации (рис. 16.13), толкающие каретки 1, соединенные с тяговой цепью 4, передвигаются по рельсовому пути 3 на роликах 2. Грузовые тележки 5, не связанные с тяговой цепью 4, перемещаются по нижнему подвесному пути б, расположенному под вспомогательным. На тяговой цепи (а в других конструкциях – на грузовых каретках) закреплены качающиеся упорные рычаги 7, которые упираются в грузовую тележку 5 (или в выступ на тяговой цепи) и передвигают ее в заданном направлении.

Грузовые тележки не соединены непосредственно с тяговой цепью, поэтому, имея переводные стрелки, на пути перемещения грузовых тележек можно вручную или автоматически отводить грузовые тележки с основного пути на линию обработки и затем снова возвращать на основную трассу для дальнейшего следования. Это позволяет объединить в одну полностью автоматизированную систему отдельные, даже различные по ритму, транспортные и технологические операции.

Подвесные толкающие конвейеры выполняют следующие операции: переводят тележки с грузом с одного конвейера на другой с помощью автоматических или дистанционно управляемых стрелок; автоматически распределяют грузы по складским стеллажам с одновременной их сортировкой; выдают грузы со складов в требуемом ритме по заданной программе.

На ряде заводов подвесные толкающие конвейеры выполняют все перечисленные операции, связанные с изготовлением стержней, их отделкой, окраской, сушкой, транспортированием на склад, поадресное хранение, выдачу со склада по заданной программе к автоматическим формовочно-заливочным линиям.

Одно из важных преимуществ подвесных толкающих конвейеров – это возможность автоматического учета транспортируемых изделий по каждому наименованию, независимо от их количества. Учет может быть как в штуках, так и по массе. В последние годы широко применяются усовершенствованные системы подвесных толкающих конвейеров с автоматическим управлением и адресованием груза, позволяющие механизировать трудоемкие работы.

Недостатки толкающих конвейеров: большая габаритная высота, чем у обычного грузонесущего подвесного конвейера, более высокая собственная масса конструкции на единицу длины пути, а также относительно высокая стоимость.

Элеваторы

Элеватор – транспортирующее устройство, перемещающее материал в вертикальном направлении (рис. 16.14). Элеватор состоит из головки 1, башмака 5 и герметичного кожуха 3. Тяговым органом элеватора служит конвейерная лента 2 шириной 250-600 мм или (реже) цепь. Лента огибает верхний приводной барабан и нижний натяжной. На ленте установлены ковши 4. Материал загружается в элеватор через загрузочную воронку. Ковши при огибании нижнего барабана зачерпывают материал, поднимают его вверх и разгружаются на верхнем барабане.

Схема устройства элеватора

Привод элеватора снабжен устройством, исключающим обратное движение ленты. Для влажных материалов, например формовочной смеси; применяют мелкие ковши (рис. 16.15, а), а для сухих материалов (песок, молотая глина) – глубокие ковши (рис. 16.15, б).

Схемы устройства и крепления ковшей к ленте элеватора

Элеваторы хорошо работают при транспортировании сухих сыпучих материалов. Влажные материалы при транспортировании налипают на ковши, что приводит к потере производительности. При транспортировании отработанных смесей элеваторы также работают ненадежно, так как вместе со смесью попадают металлические включения, которые приводят к повреждению или к обрыву ленты. При проектировании современных литейных цехов для перемещения исходных формовочных материалов и смесей элеваторы стремятся не применять, а вместо них, если это возможно, ставят наклонные ленточные конвейеры.

Скорость движения ленты элеватора для порошкообразных грузов 2-2,5 м/с, а для кусковых грузов 1-2 м/с.

Гравитационные устройства и роликовые конвейеры

Простейшими гравитационными устройствами являются наклонные плоскости, желоб, трубы, по которым скатывается транспортируемый груз. Угол наклона желоба определяется коэффициентом трения между его поверхностью и материалом и углом естественного откоса. Обычно угол наклона желоба больше угла внутреннего трения на 5-10°.

Иногда применяют спиральные спуски, в которых желоб выполнен по винтовой линии вокруг вертикальной оси. К гравитационным устройствам для транспортирования грузов относятся роликовые конвейеры, в которых наклонная плоскость образована из ряда роликов, установленных на раме (рис. 16.16, а). Часто роликовые конвейеры делают приводными (рис. 16.4 , б), в этом случае они не имеют наклона.

Схемы роликовых конвейеров

Иногда для перемещения грузов по горизонтальному роликовому конвейеру используют пневматические или гидравлические толкатели. Например, передача форм на заливочный конвейер и с конвейера на выбивное устройство осуществляется пневматическими толкателями по горизонтальному неприводному роликовому конвейеру, а движение отливок с выбивной решетки на пластинчатый конвейер или в тару подвесного конвейера происходит по наклонному желобу под действием силы тяжести. Приводные роликовые конвейеры, обычно выполняемые секциями длиной по 2-3 м, имеют единый групповой привод с конической зубчатой или цепной передачей. В ряде случаев цилиндрические ролики заменяют дисковыми. Такие ролики удобны при прохождении грузов по криволинейным в плане участкам.

Качающиеся конвейеры

Качающийся конвейер представляет собой желоб, подвешенный на неподвижную раму. Желоб совершает колебательные движения, вследствие чего груз, находящийся в нем, перемещается.

Качающиеся конвейеры могут быть с переменным и постоянным давлением груза на желоб. Качающийся конвейер с переменным давлением груза на желоб (рис. 16.17, а) состоит из стального желоба 1, совершающего колебательные движения на упругих стойках 2 под действием кривошипного механизма 3. Вследствие того, что опорные стойки установлены наклонно к желобу, последний с грузом при движении вперед несколько приподнимается, а при движении назад опускается. Длину кривошипа выбирают малой по сравнению с длиной шатуна и длиной опорных стоек, вследствие чего закон изменения скорости желоба vm близок к синусоидальному, а само движение желоба можно рассматривать как прямолинейное.

Схемы качающихся конвейеров

Амплитуда колебания конвейеров с кривошипно-шатунным механизмом составляет 30-40 мм при числе циклов 300-400 в минуту. Упругие опорные стойки желоба устанавливают с наклоном под углом α = 2÷30° относительно вертикали в сторону, обратную движению груза. Средняя скорость движения груза v обычно составляет 0,15-0,20 м/с. Для наклонных конвейеров с увеличением угла наклона желоба в сторону подъема скорость движения груза резко уменьшается и угол наклона не превышает 15°.

Качающиеся конвейеры с постоянным давлением груза на желоб отличаются от конвейеров с переменным давлением тем, что желоб в них установлен на роликовых или шариковых опорах и он совершает продольное поступательно-возвратное движение под влиянием двойного кривошипного механизма (рис. 16.17, б). Этот механизм состоит из шарнирного четырехзвенника OABC, в котором кривошип OA вращается равномерно, а кривошип BC, вращающийся неравномерно, передает колебательное движение желобу 1 через тягу 2. Высоту слоя материала в желобе b принимают равной 50-100 мм; коэффициент заполнения желоба обычно составляет 0,5-0,6. Среднюю скорость передвижения груза в горизонтальном желобе принимают не выше 0,2 м/с. Амплитуда колебаний желоба составляет 50-100 мм, а частота 1-2 Гц.

Вибрационные конвейеры

В отличие от качающихся конвейеров, в которых груз скользит по желобу, не отрываясь от него, вибрационные конвейеры (рис. 16.18) работают с такими ускорениями, вертикальная составляющая которых больше ускорения свободного падения. При этом частица груза отрывается от желоба и движется в виде непрерывно следующих один за другим микрополетов. При таком движении груз не дробится, не пылит и практически не изнашивает желоб. Наиболее рациональное транспортирование сыпучих грузов будет в том случае, если в конце микрополета частица попадает на желоб в начале следующего периода колебаний. Желоб или трубу вибрационного конвейера обычно устанавливают на пружинных подвесках. Частота колебаний вибрационного конвейера до 50 Гц при амплитуде менее 1 мм создается инерционными, электромагнитными, пневматическими и гидравлическими вибраторами.

Схемы вибрационного конвейера

Инерционные вибраторы применяют в тех случаях, когда при небольших габаритных размерах и массе привода необходимо получить значительные возмущающие силы. К инерционным относится вибратор с дебалансным электродвигателем (рис. 16.19, а).

Схемы инерционного вибратора

Большинство из конструкций этих типов вибраторов рассчитано на одну постоянную рабочую частоту, но есть вибраторы и с регулируемой частотой. Возмущающую силу также можно регулировать. Благодаря меньшей частоте колебаний (15-25 Гц) питатели с дебалансным электродвигателем работают менее шумно.

Наиболее совершенны электромагнитные вибраторы (рис. 16.19, б). В них нет трущихся и быстроизнашивающихся деталей, предусмотрена возможность регулирования амплитуды колебаний без прекращения работы установки.

Усилие Р, создаваемое электромагнитным вибратором, можно определить по формуле:

где m – масса перемещаемого материала, кг;
а – амплитуда колебаний, м;
λ – отношение собственной частоты колебаний конвейера вместе с материалом ω0 к частоте колебаний привода (вынужденной частоте) ω; λ = ω0/ω.

Основные преимущества вибрационных конвейеров: возможность транспортирования груза в условиях полной изоляции от окружающей среды в закрытых желобах или трубах; возможность выполнения одновременно с транспортированием других технологических операций – сушки, охлажнения, смешивания, просеивания и т.д.; малое изнашивание несущего элемента (трубы или желоба); сравнительная простота конструкции машины; возможность промежуточной загрузки и разгрузки; малый расход энергии при установившейся работе.

Схема вертикального виброконвейера

Наряду с горизонтальными вибрационными конвейерами в литейных цехах все большее применение находят вертикальные конвейеры для перемещения грузов по вибрационному желобу 2, идущему по винтовой линии вверх (рис. 16.20). Для этого желобу, установленному на пружины 3, сообщают возвратно-вращательное движение вокруг вертикальной оси и колебательное движение вдоль той же оси с помощью вибраторов 1. Материал движется так же, как и в горизонтальном желобе, посредством микрополетов, но при вертикальном транспортировании эти полеты совершаются не по прямой линии, а по непрерывно изменяющейся касательной. Максимальная высота вертикальных вибрационных конвейеров достигает 8 м; отношение высоты к внешнему диаметру винтового желоба может доходить до 10. С наибольшей скоростью транспортируются мелкокусковые и зернистые грузы (кокс, шлак, руда, песок, глина); с более низкой скоростью – пылевидные грузы (молотая глина, асбестовая крошка, молотый уголь, маршалит). При движении влажных нелипких грузов (например, сырой песок) создается более стабильный поток. При влажности более 12% скорость движения резко снижается. Влажные липкие материалы (например, сырую глину) нельзя транспортировать вибрационными конвейерами. Скорость перемещения грузов горизонтальными вибрационными конвейерами находится в пределах 0,1-0,3 м/с.

Угол наклона желоба вертикальных вибрационных конвейеров обычно не превышает 15-20°.

Вибрационные конвейеры значительно (в 3-4 раза) экономичнее ленточных, а вибрационные питатели экономичнее и легче ленточных, качающихся и тарельчатых питателей. Однако при транспортировании на расстояние более 50 м вибрационные конвейеры уступают ленточным конвейерам как по металлоемкости, так и по расходу энергии. Вертикальные конвейеры находят применение только в цехах, где нет площадей для размещения ленточных конвейеров, а высота подъема сухих сыпучих материалов относительно невелика (30-40 м).

Винтовые конвейеры

Винтовой конвейер – устройство, служащее для перемещения материала по желобу с помощью вращающегося винта (рис. 16.21). Он состоит из неподвижного желоба 7, закрытого сверху крышкой 3, приводного вала 8 с укрепленными на нем витками транспортирующего винта, концевых 2, 6 и промежуточных 4 опор, привода 1, загрузочного 5 и разгрузочного 9 устройств. При вращении винта груз перемещается витками винта по желобу.

Схема винтового конвейера

Винтовые конвейеры используют для транспортирования пылящих материалов (молотая глина, маршалит и т.д.); при этом легко обеспечивается герметичность. Винтовым конвейером можно транспортировать материалы не только по горизонтали, по и по наклонному и вертикальному желобам. Эти конвейеры нецелесообразно использовать для перемещения крупнокусковых, абразивных или слипающихся грузов.

Шаг винта обычно равен его диаметру или несколько меньше. Частота вращения винта зависит от плотности материала: для тяжелых материалов n = 0,8 с -1 , а для легких 1,5 ÷ 2,5 с -1 .

Пневматические транспортные установки

Пневматическим транспортированием называют перемещение грузов по трубам за счет перепада давления воздуха. В смеси с воздухом транспортируют главным образом порошкообразные и зернистые материалы (глину, уголь, песок, опилки и т.д.), реже сухой песок и формовочные смеси на расстояние до 2 км и на высоту до 100 м.

Пневматические транспортные установки подразделяются на всасывающие, нагнетательные и комбинированные.

Схемы пневматических транспортных установок

Принцип работы всасывающих установок основан на создании разрежения воздуха в транспортном трубопроводе (рис. 16.22, а). Всасывающие установки малопроизводительны, так как создать большое разрежение (более 10 кПа) затруднительно. Обычно же в литейных цехах работают всасывающие пневматические установки при разрежении не более 10 кПа для транспортирования пылевидных материалов на небольшие расстояния. Преимущества установок всасывающего типа в том, что материал можно забирать из разных мест, а кроме того, в случае нарушения герметичности трубопровода пыль не будет выделяться в цех.

Нагнетательные установки работают под действием сжатого воздуха, подаваемого в транспортный трубопровод (рис. 16.22, б). Эти установки используют для транспортирования тяжелых пылевидных и кусковых грузов на большие расстояния. Недостаток нагнетательных установок – выделение пыли в цех при нарушении герметичности трубопроводов, повышенное изнашивание трубопроводов в коленах.

Для создания необходимого перепада давлений воздуха в трубопроводе в нагнетательных установках применяют компрессоры и воздуходувки, а во всасывающих системах вакуум-насосы и вентиляторы высокого давления. В качестве питателей в пневмотранспортных системах используют винтовые и камерные.

Схема винтового питателя

Винтовой питатель (рис. 16.23) – короткий винтовой (шнековый) конвейер, установленный на раме 1. Винт 4 питателя имеет переменный шаг, что позволяет во время работы уплотнять транспортируемый материал настолько, что постоянно сохраняется соответствующее давление сжатого воздуха в транспортном трубопроводе 8. Транспортируемый материал из загрузочной воронки 3 винтом 4 подается в смесительную камеру б. Степень уплотнения материала регулируется грузовым клапаном 5. В нижней части смесительной камеры расположены два ряда форсунок 7, через которые вводится сжатый воздух. Воздух аэрирует материал и вводит его в транспортный трубопровод 8, Преимущество винтовых питателей – небольшие габаритные размеры и простота в управлении, недостаток большая потребляемая мощность электродвигателя 2 и быстрое изнашивание. Камерный питатель (рис. 16.24, а, б) представляет собой цилиндрический сосуд со сферическим верхним и коническим нижним днищами с верхней или нижней выдачей материала. Загрузка происходит через верхнюю горловину большого сечения с конической, герметично закрывающейся изнутри крышкой. Сжатый воздух, поступая от компрессора и проходя через материал в камере, стремится уйти через транспортный трубопровод и увлекает за собой материал.

Схемы камерного питателя

Питатель с верхней выдачей материала обеспечивает лучшее рыхление материала, что способствует более производительному его транспортированию.

Чтобы предохранить колена трубопроводов от изнашивания, используют специальные защитные устройства, одно из которых изображено на рис. 16.25.

Схема защитного устройства от изнашивания колена трубопровода

Нагнетательные установки используют не только для перемещения сыпучих материалов, но и для транспортирования штучных грузов (доставка образцов стали, формовочной смеси и других материалов в экспресс-лабораторию для анализа). Груз помещается в специальные патроны, которые и перемещаются со скоростью 6-10 м/с в трубопроводах под давлением сжатого воздуха.

Разновидностью пневмотранспорта являются аэрожелоба, применяемые для транспортирования песка, молотого угля, молотой глины, маршалита и других порошкообразных материалов на небольшие расстояния (до 50 м). Аэрожелоб (рис. 16.26) для транспортирования и охлаждения песка представляет собой наклонное корыто 9 с дверкой 10 для осмотра и с горизонтальным перфорированным полотном 5, на котором перемещается песок, поступающий по лотку 7. Воздух под давлением 2,5-3,0 кПа нагнетается вентилятором 8 под полотно и в виде мельчайших струек проходит через песок и приводит его во взвешенное состояние. Благодаря наклону желоба и движению потока вентиляционного воздуха в движение приходит и аэросмесь (смесь воздуха с материалом). В верхней части желоба, кроме вентиляционных трубопроводов 5, 6, имеется песколовушка 4. Охлажденный песок поступает по лотку 2 в бункер 1.

Аэрожелоб

Преимущества пневматического транспорта – возможность транспортирования по сложной трассе и расположения трубопроводов в любом направлении; совмещение транспортирования материала с технологическими операциями (сушка, охлаждение, отбор мелких фракций и т.д.); почти полная автоматизация транспортирования. Недостатки – большой расход энергии; повышенное изнашивание трубопроводов; необходимость тщательной очистки отработанного воздуха от пыли перед выбросом его в атмосферу; невозможность транспортирования влажных и липких грузов (готовая формовочная смесь); повышенное дробление транспортируемого материала (формовочный песок).

Наибольшее распространение в литейных цехах получили всасывающие пневматические установки. В последнее время наблюдается тенденция к более широкому применению нагнетательных пневмотранспортных установок низкого давления, а значит, и малых скоростей движения материала. При этом уменьшается изнашивание трубопроводов, повышается надежность работы всей системы. Для того чтобы поддерживать давление воздуха постоянным по всей трассе, прибегают к промежуточной подаче воздуха в транспортный трубопровод.

Безрельсовые транспортные машины

К безрельсовым транспортным машинам литейных цехов относятся электрокары, автокары и автопогрузчики.

Электрокары и автопогрузчики – наиболее распространенный вид безрельсового внутрицехового транспорта в современных литейных цехах, особенно массового производства.

Электрокар (рис. 16.27) приводится в движение одним или несколькими электродвигателями постоянного тока, получающими питание от аккумуляторных батарей. Аккумуляторные батареи – наиболее ответственная часть электрокара, их устанавливают обычно рядом с местом водителя. Электрокар прост в обслуживании и управлении, маневрен, безопасен в пожарном отношении. При его работе не выделяются отработанные газы, он не производит шума при движении, пуске и остановке в помещениях.

Электрокар

Электрокар обычно имеет подъемные платформы и грузовые подставки, поэтому для погрузки и разгрузки не требуется применения физической силы. Для зарядки аккумуляторных батарей электрокаров специально оборудуют зарядные станции. В целях безопасности тормозная система ходовой части электрокара выполнена таким образом, что при снятии ноги водителя с площадки управления электрокар мгновенно останавливается и обесточивается. Автокары по внешнему виду почти ничем не отличаются от электрокаров. Вместо электродвигателя и батарей питания автокар имеет обычный бензиновый двигатель.

Автокары выполняют в цехе ту же работу, что и электрокары, но менее распространены. Это объясняется прежде всего тем, что они создают шум во время работы, сложнее в управлении и обслуживании, а отработанные газы загрязняют атмосферу цеха. Для погрузки и перевозки крупногабаритных грузов как внутри цеха, так и для межцеховых перевозок используют автопогрузчики.

Автопогрузчик смонтирован на базе автошасси, но расстояние между его передними и задними колесами значительно меньше, чем у обычных автомобилей, что делает его весьма маневренным. Вместо кузова автопогрузчик снабжен двумя вертикальными колоннами-направляющими для движения по ним тяговой цепи с вилочными захватами или специальной платформой для захвата, подъема и транспортирования грузов.

Напольно-рельсовый внутрицеховой транспорт

Для перемещения тяжелых грузов между пролетами на небольшие расстояния во многих литейных цехах применяют самоходные напольно-рельсовые тележки, которые могут быть неприводными и приводными. Неприводные тележки перемещаются по рельсам с помощью специальной лебедки и канатов. Тяговая лебедка с барабаном для намотки каната, как правило, расположена в приямке ниже уровня пола. У приводной (самоходной) тележки с электромеханическим приводом электродвигатель с редуктором находится на самой тележке, а питание к электродвигателю подается по специальному кабелю или через троллеи, встроенные в приямке между рельсами. Приямок обычно закрыт съемными плитами, а для токосъемника оставляется лишь узкая щель. Колея самоходных тележек обычно 1524 или 750 мм.

В новых цехах стараются избегать применения рельсового транспорта, так как он менее удобен, чем безрельсовый.

Прессовые формовочные машины для литейного производства с доставкой по России, Беларуси, Казахстану и другим странам СНГ

Машина предназначена для формовки верхних и нижних полуформ по односторонней модельной плите методом встряхивания с подпрессовкой. Машины такого типа широко применяется во многих литейных цехах в условиях мелкосерийного, серийного и массового производства отливок.

Для подбора оптимального смесителя для ваших задач рекомендуем получить консультацию у наших технических специалистов.

  • Длина опоки от 400 мм
  • Ширина опоки от 400 мм
  • Высота опоки до 350 мм
  • Грузоподъемность до 1000 кг
  • Усилие до 9 т
  • Гарантия Есть

Формовочные машины встряхивающие с подпрессовкой модели F

Модель F1 F2 F3 F4
Размеры опок, мм 400х400х300/250 400х450х300/250 500х490х300/250 600х500х300/250
Размеры стола, мм 550х460 610х460 580х500 650х550
Грузоподъёмность, кг 170 180 250 300
Усилие прессования, кг 3000 3000 3900 4300
Ход пресса, мм 110 110 120 140
Количество воздуха, требуемое для формовки одной опоки, м 3 0,13 0,13 0,2 0,4
Давление сжатого воздуха, МПа 0,56 0,56 0,56 0,56
Расход воздуха, м 3 0,13 0,13 0,2 0,4
Усилие прессования, кН 50 50 50 50

Формовочные машины встряхивающей с подпрессовкой со штифтовым съёмом модели FD

Модель FD-1 FD-2 FD-3 FD-4
Размер опоки, мм 600х400х200 700х500х250 800х600х350 1000х800х300
Размер рабочего стола, мм 600х460 700х575 800х680 950х800
Ход плиты, мм 200 230 280 300
Грузоподъемность, кг 200 300 500 1000
Усилие прессования, кг 3000 4300 6300 9600
Давление воздуха, МПа 0,56 0,56 0,56 0,56
Расход воздуха, м 3 0,2 0,3 0,4 0,5
Диаметр соеденительной трубы, дюйм 3/4 3/4 1 1
Габаритные размеры, мм 1200х830х1430 1220х1080х1630 1200х830х1780 1220х1710х2140

Лучшие условия работы

Скидки и бонусы для новых и действующих клиентов

При 100% оплате запуск — бесплатно

Гарантия на оборудование до 24 месяцев

Лизинг в ведущих компаниях

Авансовый платёж от 15%

Документация для строительной части от 5 до 20 дней с момента заключения Договора

Минимальная стоимость оборудования

Получите коммерческое предложение сейчас

Подробное технико-коммерческое предложение придет к вам на почту!

Формовочные машины встряхивающие с подпрессовкой модели F

Сегодня в производстве применяют различные прессовые формовочные машины . Существуют три классификации формовочного оборудования для литейного производства: по виду энергии, которая приводит машины в действие, по способу уплотнения формовочной смеси в опоке, по способу удаления модели из формы.

Формовочное литейное оборудование предназначены для формовки верхних и нижних полуформ по двухсторонней модельной плите методом встряхивания с подпрессовкой. Подпрессовка контерлада осуществляется поднятием рабочего стола машины к поворотной траверсе. Снятие готовой полуформы с модели и кантовка формы осуществляется вручную. Для облегчения протяжки полуформы к подмодельной плите прикреплен вибратор. Поворот траверсы в рабочее положение и обратно осуществляется вручную. Машина отличается простотой и надежностью конструкции, удобством управления и обслуживания.

Формовочные машины встряхивающей с подпрессовкой со штифтовым съёмом модели FD

Для снижения трудоемкости, увеличения производительности труда и удобства изготовления форм на рабочем месте устанавливают не одну, а несколько прессовых формовочных машин ПГС различных типов. Обычно это машины со штифтовым подъемом опоки для формовки верхних полуформ и машины с поворотным столом для нижних полуформ, а также дополнительно формовочную машину для формовки крупных стержней.

При выборе формовочной машины, необходимо учитывать размеры опок, конструктивные особенности формовочной машины. К примеру чтобы изготовить нижнюю полуформу желательно наличие механизма поворота, также учитываются сложность модели и особенности технологического процесса изготовления по этой модели литейных форм.

Компания «СибЛитКом» поставляет формовочные машины встряхивающей с подпрессовкой модели F, формовочные машины встряхивающей с подпрессовкой со штифтовым съёмом модели FD.

Машина предназначена для формовки верхних и нижних полуформ по односторонней модельной плите методом встряхивания с подпрессовкой. Машины такого типа широко применяется во многих литейных цехах в условиях мелкосерийного, серийного и массового производства отливок с возможностью включения в конвеерные линии.

Подпрессовка контерлада осуществляется поднятием рабочего стола машины к поворотной траверсе. Снятие готовой полуформы с модели производится при помощи штифтов, устанавливаемых под различный размер опок. Кантовка полуформы осуществляется вручную. Для облегчения протяжки полуформы к подмодельной плите прикреплен вибратор. Во время формовки траверса отводится в крайнее положение и возвращается на рабочую позицию при подпрессовке полуформы. Машина отличается простотой и надежностью конструкции, удобством управления и обслуживания.

Наше оборудование в работе

Многолетняя и стабильная работа нашего оборудования — лучший показатель качества и надежности.

§ 12. ФОРМОВОЧНЫЕ И СТЕРЖНЕВЫЕ СМЕСИ

ТехОборудование

Основные технологические циклы в литейном производстве

Производство отливок — сложный многостадийный процесс с многократным перемещением большого количества различных материалов, смесей, стержней, форм, модельно-опочной оснастки, отливок, отходов и др.
Можно выделить несколько главных потоков, обеспечивающих реализацию следующих технологических циклов (рис. 1):

  • подготовка формовочных материалов и приготовление смесей;
  • изготовление форм и стержней;
  • подготовка шихтовых материалов, получение жидкого металла и заливка его в формы;
  • выбивание, очистка и окончательная обработка отливок. Сумма последовательных технологических циклов определяет производственный цикл изготовления отливок.

Подготовка формовочных материалов и приготовление смесей

Формовочные и стержневые смеси составляются в большинстве случаев из свежих песчано-глинистых формовочных материалов, регенерата, оборотной смеси и различных добавок. Процесс приготовления смесей включает:

  • разгрузку, складирование и подготовку свежих песчано-глинистых материалов и добавок;
  • подготовку оборотной формовочной смеси;
  • регенерацию отработанных смесей;
  • приготовление смесей.

Схема технологического процесса изготовления отливок в песчаных формах

Рис. 1. Схема технологического процесса изготовления отливок в песчаных формах

Свежие пески и необходимые добавки подготавливаются на складах формовочных материалов, где производятся сушка, охлаждение и просеивание кварцевых песков; резка, сушка и измельчение глины; размалывание каменного угля; измельчение и просеивание высокоогнеупорных материалов (магнезита, циркона и др.); приготовление жидких связующих материалов, глиняных суспензий и др.

Читайте также: Назначение флюса и особенности его применения при пайке

Подготовка оборотной смеси заключается в просеивании, магнитной сепарации, охлаждении и гомогенизации, т.е. придании ей однородности по содержанию влаги и температуре.

Регенерация отработанных смесей — это восстановление зернового состава смеси и активация поверхности зерен песка.

Приготовление смесей включает дозирование исходных материалов, их смешивание, выдержку смеси и ее разрыхление. Оборудование, применяемое для этого, можно разделить на следующие группы:

а) оборудование для складирования и подготовки формовочных материалов;

б) оборудование для подготовки оборотных смесей;

в) смесеприготовительное оборудование;

г) транспортное оборудование.

Установка для сушки песка в потоке горячего воздуха изображена на рис. 2. Сырой песок из расходного бункера 10 при помощи дискового 9 и ленточного 8 питателей подается в сушильную трубу 1, температура в которой достигает 500 °C. Разрежением, создаваемым вентилятором 4, сырой песок увлекается вверх со скоростью 15… 17 м/с и, проходя по трубе, в горячем газе быстро высыхает. Установка снабжена батарейным циклоном-осадителем 2 и скруббером 3 для сбора пыли. Из циклона-осадителя высушенный песок поступает в бункер 6, из которого подается на вибрационное сито 5, где просеивается и частично охлаждается. В качестве источника тепла рекомендуется использовать газ, подводимый к горелкам 7.

Влага с поверхности зерен удаляется тем быстрее, чем выше температура и скорость воздуха, омывающего частицы материала.

Установка для сушки песка в потоке воздуха

Рис. 2. Установка для сушки песка в потоке воздуха: 1 — сушильная труба; 2 — батарейный циклон-осадитель; 3 — скруббер для сбора пыли; 4 — вентилятор; 5 — вибрационное сито; 6 — бункер; 7 — горелка; 8 — ленточный питатель; 9 — дисковый питатель; 10 — расходный бункер Рис. 2. Установка для сушки песка в потоке воздуха

Этот метод позволяет реализовать многие преимущества пневматического транспорта: возможность совмещения по времени сушки и транспортирования, а также одновременного обеспыливания песка, компактность установки и др.

bredent-техника литья. Дентальное литье — точность

Если для замешивания массы используется небольшое количество жидкости, то повышением плотности смеси кварца, кристобалита и гипса достигается более высокое тепловое расширение.

лагодаря высокой степени гидрофильности гипса, как связующего вещества, можно получить более однородную формовочную смесь, используя различное количество жидкости. Это позволяет применять ее для формовки поверхностей любого качества без образования трещин.

Кварц и кристобалит — это основные компоненты формовочной смеси с фосфатным связующим. В этом случае гипс, как составная часть связки, заменяется фосфатами. Кварц, кристобалит, кислый фосфат аммония и жженую магнезию смешивают до получения гомогенного состояния.

Изменяя консистенцию используемых компонентов смеси, производитель может изменять качества формовочной массы и, таким образом, удовлетворять разнообразные требования.

Читайте также: Твердые вещества: свойства, строение, плотность и примеры

Варьируя количество используемой жидкости, при гипсовой связке формовочной смеси можно достичь более точной регулировки расширения, чем при применении фосфатной связки кварца и кристобалита.

Фосфаты обладают очень незначительным смачиванием: малые порции жидкости не позволяют смешать формовочную массу гомогенно, в то же время при увеличении количества связующего не возникает никакого дополнительного контактного соединения.

Из-за этого литейные формы рвутся и образуют шероховатую поверхность отливки. Чтобы соотношение связующего компонента и порошка изменялось незначительно, в качестве жидкости для смешивания используют кремниевый золь.

При комнатной температуре 20 ° C плотность кремниевого золя составляет 1,4 г/см3 , что превышает плотность воды (1,0 г/см3). Высокая плотность кремниевого золя повышает коэффициент расширения смеси, способствуя улучшению кристаллизации и качества формы при затвердевании.

Плотность концентрированного кремниевого золя уменьшается при добавлении к нему дистиллированной воды, и, как следствие, уменьшается расширение смеси. Таким образом, на тепловое расширение можно влиять даже при использовании формовочной массы с фосфатным связующим.

В качестве связующего вещества и жидкости для смешивания формовочной массы на основе кварца и кристобалита используется смесь этилсиликата и соляной кислоты, как основной связующий материал.

Порошок формовочной смеси состоит только из кварца и кристобалита. Оба компонента равномерно перемешаны. Расширение формовочной массы определяется производителем в зависимости от процентного состава (%, по массе) между частями кварца и кристобалита и зависит исключительно от нагрева.

Изменение термического расширения в зависимости от требований и специфики невозможно, для каждого необходимого расширения нужна другая формовочная масса. Затвердевание жидкой формовочной смеси с образованием литейной полости происходит в процессе нагрева.

Во время преобразования кварца и кристобалита этилсиликат, активированный соляной кислотой, в процессе кристаллизации связывает формовочную массу. Связующие вещества формовочной смеси не рекомендуется постоянно хранить в зуботехнической лаборатории.

Приоритет необходимо отдать состоянию здоровья зубного техника, а не условиям хранения формовочной массы. Пары кислоты, входящей в состав связующего компонента, могут изменить состав воздуха в помещении и превысить гигиенические нормы.

Дробильно-размольное оборудование для подготовки формовочных материалов

В зависимости от степени измельчения материала дробильно-размольные машины разделяют на дробилки и мельницы. По конструкции и принципу действия различают дробилки (щековые, валковые, молотковые) и мельницы (шаровые, молотковые, вибрационные и др.).

Механическое дробление может осуществляться:

Читайте также: Термитная сварка (стр. 1 из 2)

  • раздавливанием;
  • изломом, при котором материал разрушается в результате изгиба;
  • истиранием кусков материала какой-либо скользящей поверхностью;
  • раскалыванием;
  • ударом.

Валковые дробилки применяются в литейных цехах для мелкого и среднего дробления карьерной глины, сухих бракованных стержней, отработанных смесей и др. В них материал измельчается между вращающимися навстречу друг другу валками. На рис. 3 показана валковая дробилка, у которой один из валков 3 может перемещаться относительно рамы 1, сжимая пружину 2. Степень измельчения в валковых дробилках регулируется изменением зазора d между двумя валками с помощью сменных прокладок 6, которые имеют разную толщину.

Валковая дробилка

Рис. 13. Валковая дробилка: 1 — рама; 2 — пружина; 3 — валок; 4 — бункер; 5 — измельчаемый материал; 6 — сменные прокладки

Формовочная или стержневая смесь приготавливается в результате нескольких операций: перемешивания компонентов смеси, увлажнения и разрыхления в смесеприготовительных комплексах (рис. 4).

Перемешивание осуществляется в смесителях. Это могут быть бегуны с вертикальными или горизонтальными катками. Песок, глину, воду и другие составляющие загружают при помощи дозаторов. Готовую смесь выдерживают в бункерах-отстойниках в течение 2…5 часов для распределения влаги и образования водных оболочек вокруг глинистых частиц, после чего разрыхляют и подают на формовку.

Смесеприготовительный комплекс

Рис. 4. Смесеприготовительный комплекс: 1 — смеситель; 2 — весовой бункер-дозатор сухих компонентов на 70 кг; 3 — вихревой смеситель; 4 — рама; 5 — шнековый питатель; 6 — весовой бункер- дозатор жидких компонентов на 55 кг; 7 — весовой бункер-дозатор на 1200 кг; 8 — шнековый питатель; 9 — автоматизированное рабочее место лаборанта; 10 — пневмо- и электрооборудование

Приготовление формовочных смесей

Сначала подготавливают песок, глину и другие исходные материалы. Песок сушат и просеивают. Глину сушат, размельчают, размалывают в шаровых мельницах или бегунах и просеивают. Аналогично получают угольный порошок.

Подготавливают оборотную смесь. Оборотную смесь после выбивки из опок разминают на гладких валках, очищают от металлических частиц в магнитном сепараторе и просеивают.

Приготовление формовочной смеси включает несколько операций: перемешивание компонентов смеси, увлажнение и разрыхление.

Перемешивание осуществляется в смесителях-бегунах с вертикальными или горизонтальными катками. Песок, глину, воду и другие составляющие загружают при помощи дозатора, перемешивание осуществляется под действием катков и плужков, подающих смесь под катки.

Готовая смесь выдерживается в бункерах-отстойниках в течение 2…5 часов, для распределения влаги и образования водных оболочек вокруг глинистых частиц.

Готовую смесь разрыхляют в специальных устройствах и подают на формовку.

Стержневые смеси соответствуют условиям технологического процесса изготовления литейных стержней, которые испытывают тепловые и механические воздействия. Они должны иметь боле высокие огнеупорность, газопроницаемость, податливость, легко выбиваться из отливки.

Огнеупорность – способность смеси и формы сопротивляться растяжению или расплавлению под действием температуры расплавленного металла.

Газопроницаемость – способность смеси пропускать через себя газы (песок способствует ее повышению).

В зависимости от способа изготовления стержней смеси разделяют: на смеси с отвердением стержней тепловой сушкой в нагреваемой оснастке; жидкие самотвердеющие; жидкие холоднотвердеющие смеси на синтетических смолах; жидкостекольные смеси, отверждаемые углекислым газом.

Приготовление стержневых смесей осуществляется перемешиванием компонентов в течение 5…12 минут с последующим выстаиванием в бункерах.

В современном литейном производстве изготовление смесей осуществляется на автоматических участках.

Модельный комплект

приспособления, включающие литейную модель, модели литниковой системы, стержневые ящики, модельные плиты, контрольные и сборочные шаблоны.

Литейная модель

Читайте также: Нержавеющая_сталь_удельное_электрическое_сопротивление

приспособление, с помощью которого в литейной форме получают отпечаток, соответствующий конфигурации и размерам отливки.

Применяют модели разъемные и неразъемные, деревянные, металлические и пластмассовые.

Размеры модели больше размеров отливки на величину линейной усадки сплава.

Модели деревянные (сосна, бук, ясень), лучше изготавливать не из целого куска, а склеивать из отдельных брусочков с разным направлением волокон, для предотвращения коробления.

Достоинства: дешевизна, простота изготовления, малый вес. Недостаток: недолговечность.

Для лучшего удаления модели из формы ее окрашивают: чугун – красный, сталь – синий.

Металлические модели характеризуются большей долговечностью, точностью и чистой рабочей поверхностью. Изготавливаются из алюминиевых сплавов – легкие, не окисляются, хорошо обрабатываются. Для уменьшения массы модели делают пустотелыми с ребрами жесткости.

Модели из пластмасс устойчивы к действию влаги при эксплуатации и хранении, не подвергаются короблению, имеют малую массу.

Стержневой ящик

формообразующее изделие, имеющее рабочую полость для получения в ней литейного стержня нужных размеров и очертаний из стержневой смеси. Обеспечивают равномерное уплотнение смеси и быстрое извлечение стержня. Изготавливают из тех же материалов, что и модели. Могут быть разъемными и неразъемными (вытряхными), а иногда с нагревателями.

Изготовление стержней может осуществляться в ручную и на специальных стержневых машинах.

Модельные плитыформируют

разъем литейной формы, на них закрепляют части модели. Используют для изготовления опочных и безопочных полуформ.

Для машинной формовки применяют координатные модельные плиты и плиты со сменными вкладышами (металлическая рамка плюс металлические или деревянные вкладыши).

Изготовление литейных форм

Основными операциями изготовления литейных форм являются: уплотнение формовочной смеси для получения точного отпечатка модели в форме и придание форме достаточной прочности; устройство вентиляционных каналов для вывода газов из полости формы; извлечение модели из формы; отделка и сборка формы.

Формы изготавливаются вручную, на формовочных машинах и на автоматических линиях.

Ручная формовка применяется для получения одной или нескольких отливок в условиях опытного производства, в ремонтном производстве, для крупных отливок массой 200…300 тонн.

Приемы ручной формовки: в парных опоках по разъемной модели; формовка шаблонами; формовка в кессонах.

Формовка шаблонами применяется для получения отливок, имеющих конфигурацию тел вращения в единичном производстве

Шаблон – профильная доска. Изготовление формы для шлаковой чаши (рис. 5.4.а.) показано на рис. 5.4.

Рис.5.4. Шаблонная формовка

В уплотненной формовочной смеси вращением шаблона 1, закрепленного на шпинделе 2 при помощи серьги 3, оформляют наружную поверхность отливки (рис. 5.4.в.) и используют ее как модель для формовки в опоке верхней полуформы 6 (рис. 5.4.г). Снимают серьгу с шаблоном, плоскость разъема покрывают разделительным слоем сухого кварцевого песка, устанавливают модели литниковой системы, опоку, засыпают формовочную смесь и уплотняют ее. Затем снимают верхнюю полуформу. В подпятник 7 устанавливают шпиндель с шаблоном 4, которым оформляют нижнюю полуформу, сжимая слой смеси, равный толщине стенки отливки (рис. 5.4.д). Снимают шаблон, удаляют шпиндель, отделывают болван и устанавливают верхнюю полуформу (рис. 5.4.е). В готовую литейную форму заливают расплавленный металл.

Формовка в кессонах.

Формовкой в кессонах получают крупные отливки массой до 200 тонн.

Кессон – железобетонная яма, расположенная ниже уровня пола цеха, водонепроницаемая для грунтовых вод.

Механизированный кессон имеет две подвижные и две неподвижные стенки из чугунных плит. Дно из полых плит, которые можно продувать (для ускорения охлаждения отливок) и кессона. Кессон имеет механизм для передвижения стенок и приспособлен для установки и закрепления верхней полуформы.

Используется в массовом и серийном производстве, а также для мелких серий и отдельных отливок.

Повышается производительность труда, улучшается качество форм и отливок, снижается брак, облегчаются условия работы.

По характеру уплотнения различают машины: прессовые, встряхивающие и другие.

Уплотнение прессованием может осуществляться по различным схемам, выбор которой зависит от размеров формы моделей, степени и равномерности уплотнения и других условий.

В машинах с верхним уплотнением (рис. 5.5.а) уплотняющее давление действует сверху. Используют наполнительную рамку.

При подаче сжатого воздуха в нижнюю часть цилиндра 1 прессовый поршень 2, стол 3 с прикрепленной к нему модельной плитой 4 с моделью поднимается. Прессовая колодка 7, закрепленная на траверсе 8 входит в наполнительную рамку 6 и уплотняет формовочную смесь в опоке 5. После прессования стол с модельной оснасткой опускают в исходное положение.

У машин с нижним прессованием формовочная смесь уплотняется самой моделью и модельной плитой.

Уплотнение встряхиванием происходит в результате многократно повторяющихся встряхиваний (рис. 5.5.б). Под действием сжатого воздуха, подаваемого в нижнюю часть цилиндра 1, встряхивающий поршень 2 и стол с закрепленной на нем модельной плитой 4 с моделью поднимается на 30…100 мм до выпускного отверстия, затем падает.

Рис. 5.5. Схемы способов уплотнения литейных форм при машинной формовке

а – прессованием; б — встряхиванием

Читайте также: Как самостоятельно варить чугун полуавтоматом

Формовочная смесь в опоке 5 и наполнительной рамке 6 уплотняется в результате появления инерционных сил. Способ характеризуется неравномерностью уплотнения, уплотнение верхних слоев достигается допрессовкой.

Модельная плита имеет вакуумную полость. В модели имеются сквозные отверстия диаметром 0,5…1 мм, совпадающие с отверстиями в плите. Модельную плиту с моделью закрывают нагретой полимерной пленкой. В воздушной коробке насосами создается вакуум 40…50 кПа. Затем устанавливается опока с сухим кварцевым песком, который уплотняется с помощью вибраций.

На верхнюю поверхность помещают разогретую пленку, плотно прилегающую к опоке. Полуформу снимают с модели. При заливке металла пленка сгорает, образуя противопригарное покрытие.

Уплотнение пескометом осуществляется рабочим органом пескомета – метательной головкой. Формовочная смесь подается в головку непрерывно. Пескомет обеспечивает засыпку смеси и ее уплотнение. При вращении ковша (1000…1500 мин–1) формовочная смесь выбрасывается в опоку со скоростью 30…60 м/с. Метательная головка может перемещаться над опокой. Пескомет – высокопроизводительная формовочная машина, его применяют при изготовлении крупных отливок в опоках и кессонах.

Безопочная автоматическая формовка

Используется при изготовлении форм для мелких отливок из чугуна и стали в серийном и массовом производстве.

Изготовление литейных форм осуществляется на высокопроизводительных пескодувно-прессовых автоматических линиях (рис. 5.6).

Рис. 5.6. Изготовление безопочных литейных форм

Формовочная камера заполняется смесью с помощью сжатого воздуха из головки 2. Уплотнение осуществляется при перемещении модельной плиты 1 плунжером 4. После уплотнения поворотная модельная плита 3 отходит влево и поворачивается в горизонтальное положение. Полуформа перемещается плунжером 4 до соприкосновения с предыдущим комом, образуя полость 5. Затем производят заливку металла из ковша 6. После затвердевания и охлаждения отливок, формы подаются на выбивную решетку, где отливки 7 освобождаются от формовочной смеси.

Изготовление стержней осуществляется вручную или на специальных стержневых машинах из стержневых смесей.

Изготовление стержней включает операции: формовка сырого стержня, сушка, окраска сухого стержня. Если стержень состоит из нескольких частей, то после сушки их склеивают.

Ручная формовка осуществляется в стержневых ящиках. В готовых стержнях выполняют вентиляционные каналы. Для придания стержням необходимой прочности используются арматурные каркасы из стальной проволоки или литого чугуна.

Готовые стержни подвергаются сушке при температуре 200…230 0С, для увеличения газопроницаемости и прочности. Во время сушки из стержня удаляется влага, частично или полностью выгорают органические примеси

Часто стержни изготавливают на пескодувных машинах. При использовании смесей с синтетическими смолами, стержни изготавливают в нагреваемой оснастке.

Изготовление стержней из жидкостекольных смесей состоит в химическом отверждении жидкого стекла путем продувки стержня углекислым газом.

Приготовление литейных сплавов связано с плавлением различных материалов. Для получения заданного химического состава и определенных свойств, в сплав в жидком или твердом состоянии вводят специальные легирующие элементы: хром, никель, марганец, титан и др.

Для плавления чугуна и стали, в качестве исходных материалов применяют литейные или передельные доменные чугуны, чугунный и стальной лом, отходы собственного производства, а также для понижения температуры плавления и образования шлаков – флюсы (известняк).

Чугуны, в основном, выплавляют в вагранках. В последнее время развивается плавка в электрических печах, а также дуплекс-процесс, в особенности, вариант вагранка – индукционная печь.

Плавку стали ведут в электродуговых, индукционных и плазменно-индукционных печах.

Для плавления цветных металлов используют как первичные, полученные на металлургических заводах, так и вторичные, после переплавки цветного лома, металлы и сплавы, а также – флюсы (хлористые и фтористые соли).

Для плавления применяют индукционные печи промышленной частоты, электрические печи сопротивления. Плавку тугоплавких металлов и сплавов ведут в вакууме или в среде защитных газов.

Сборка и заливка литейной формы

Сборка литейной формы

включает: установку нижней полуформы; установку стержней, устойчивое положение которых обеспечивается стержневыми знаками; контроль отклонения размеров основных полостей формы; установку верхней полуформы по центрирующим штырям.

форм расплавленным металлом осуществляется из ковшей чайникового, барабанного и других типов. Важное значение имеет температура расплавленного металла. Целесообразно назначать ее на 100…150 0C выше температуры плавления:: низкая температура увеличивает опасность незаполнения формы, захвата воздуха, ухудшения питания отливок; при высокой температуре металл больше насыщен газами, сильнее окисляется, возможен пригар на поверхности отливки.

Заливку ведут непрерывно до полного заполнения литниковой чаши.

Охлаждение, выбивка и очистка отливок

отливок до температуры выбивки длится от нескольких минут (для небольших тонкостенных отливок) до нескольких суток и недель (для крупных толстостенных отливок). Для сокращения продолжительности охлаждения используют методы принудительного охлаждения:

а) обдувают воздухом,

б) при формовке укладывают змеевики, по которым пропускают воздух или воду.

отливки – процесс удаления затвердевшей и охлажденной до определенной температуры отливки из литейной формы, при этом литейная форма разрушается. Осуществляют на специальных выбивных установках. Форма выталкивается из опоки выталкивателем на виброжелоб, по которому направляется на выбивную решетку, где отливки освобождаются от формовочной смеси. Выбивку стержней осуществляют вибрационно-пневматическими и гидравлическими устройствами.

отливок – процесс удаления с отливки прибылей, литников, выпоров и заливов по месту сопряжения полуформ.

Осуществляется пневматическими зубилами, ленточными и дисковыми пилами, при помощи газовой резки и на прессах.

После обрубки отливки зачищают, удаляя мелкие заливы, остатки выпоров и литников. Выполняют зачистку маятниковыми и стационарными шлифовальными кругами, пневматическими зубилами.

отливок – процесс удаления пригара, остатков формовочной и стержневой смесей с наружных и внутренних поверхностей отливок.

Осуществляется в галтовочных барабанах периодического или непрерывного действия (для мелких отливок), в гидропескоструйных и дробеметных камерах, а также химической или электрохимической обработкой.

Специальные способы литья

В современном литейном производстве все более широкое применение получают специальные способы литья: в оболочковые формы, по выплавляемым моделям, кокильное, под давлением, центробежное и другие.

Эти способы позволяют получать отливки повышенной точности, с малой шероховатостью поверхности, минимальными припусками на механическую обработку, а иногда полностью исключают ее, что обеспечивает высокую производительность труда. Каждый специальный способ литья имеет свои особенности, определяющие области применения.

Литье в оболочковые формы

Литье в оболочковые формы

— процесс получения отливок из расплавленного металла в формах, изготовленных по горячей модельной оснастке из специальных песчано-смоляных смесей.

Формовочную смесь приготовляют из мелкого кварцевого песка с добавлением термореактивных связующих материалов.

Технологические операции формовки при литье в оболочковые формы представлены на рис.6.1.

Металлическую модельную плиту 1 с моделью нагревают в печи до 200…250 0C.

Затем плиту 1

закрепляют на опрокидывающемся бункере
2
с формовочной смесью
3
(рис. 6.1. а) и поворачивают на 180 0 (рис. 6.1.б). Формовочную смесь выдерживают на плите 10…30 секунд. Под действием теплоты, исходящей от модельной плиты, термореактивная смола в приграничном слое расплавляется, склеивает песчинки и отвердевает с образованием песчано-смоляной оболочки
4,
толщиной 5…15 мм. Бункер возвращается в исходное положение (рис. 6.1. в), излишки формовочной смеси осыпаются с оболочки. Модельная плита с полутвердой оболочкой
4
снимается с бункера и прокаливается в печи при температуре 300…350 ?C, при этом смола переходит в твердое необратимое состояние. Твердая оболочка снимается с модели с помощью выталкивателей
5
(рис.6.1.г). Аналогичным образом получают вторую полуформу.

Для получения формы полуформы склеивают или соединяют другими способами (при помощи скоб).

Рис 6.1. Технологические операции формовки при литье в оболочковые формы

Собранные формы небольших размеров с горизонтальной плоскостью разъема укладывают на слой песка. Формы с вертикальной плоскостью разъема 6

и крупные формы для предохранения от коробления и преждевременного разрушения устанавливают в контейнеры
7
и засыпают чугунной дробью
8
(рис.6.1.д).

Литье в оболочковые формы обеспечивает высокую геометрическую точность отливок, малую шероховатость поверхностей, снижает расход формовочных материалов (высокая прочность оболочек позволяет изготавливать формы тонкостенными) и объем механической обработки, является высокопроизводительным процессом.

В оболочковых формах изготавливают отливки массой 0,2…100 кг с толщиной стенки 3…15 мм из всех литейных сплавов для приборов, автомобилей, металлорежущих станков.

Литье по выплавляемым моделям

Литье по выплавляемым моделям

– процесс получения отливок из расплавленного металла в формах, рабочая полость которых образуется благодаря удалению (вытеканию) легкоплавкого материала модели при ее предварительном нагревании.

Технологические операции процесса литья по выплавляемым моделям представлены на рис. 6.2.

Выплавляемые модели изготавливают в пресс-формах 1

(рис. 6.2.а) из модельных составов, включающих парафин, воск, стеарин, жирные кислоты. Состав хорошо заполняет полость пресс-формы, дает четкий отпечаток. После затвердевания модельного состава пресс-форма раскрывается и модель
2
(рис. 6.2.б) выталкивается в холодную воду.

Затем модели собираются в модельные блоки 3

(рис. 6.2.в) с общей литниковой системой припаиванием, приклеиванием или механическим креплением. В один блок объединяют 2…100 моделей.

Формы изготавливают многократным погружением модельного блока 3

в специальную жидкую огнеупорную смесь
5,
налитую в емкость
4
(рис.6.2.г) с последующей обсыпкой кварцевым песком. Затем модельные блоки сушат на воздухе или в среде аммиака. Обычно наносят 3…5 слоев огнеупорного покрытия с последующей сушкой каждого слоя.

Модели из форм удаляют, погружая в горячую воду или с помощью нагретого пара. После удаления модельного состава тонкостенные литейные формы устанавливаются в опоке, засыпаются кварцевым песком, а затем прокаливают в печи в течение 6…8 часов при температуре 850…950 0C для удаления остатков модельного состава, испарения воды (рис. 6.2.д)

Рис.6.2. Технологические операции процесса литья по выплавляемым моделям

Заливку форм по выплавляемым моделям производят сразу же после прокалки в нагретом состоянии. Заливка может быть свободной, под действием центробежных сил, в вакууме и т.д.

После затвердевания залитого металла и охлаждения отливок форма разрушается, отливки отделяют от литников механическими методами, направляют на химическую очистку, промывают и подвергают термической обработке.

Литье по выплавляемым моделям обеспечивает получение точных и сложных отливок из различных сплавов массой 0,02…15 кг с толщиной стенки 0,5…5 мм.

Недостатком является сложность и длительность процесса производства отливок, применение специальной дорогостоящей оснастки.

Литьем по выплавляемым моделям изготавливают детали для приборостроительной, авиационной и другой отраслевой промышленности. Используют при литье жаропрочных труднообрабатываемых сплавов (лопатки турбин), коррозионно-стойких сталей, углеродистых сталей в массовом производстве (автомобильная промышленность).

Технологический процесс автоматизирован и механизирован.

Литье в металлические формы

Литье в металлические формы (кокили) получило большое распространение. Этим способом получают более 40% всех отливок из алюминиевых и магниевых сплавов, отливки из чугуна и стали.

Литье в кокиль

– изготовление отливок из расплавленного металла в металлических формах-кокилях.

Формирование отливки происходит при интенсивном отводе теплоты от расплавленного металла, от затвердевающей и охлаждающейся отливки к массивному металлическому кокилю, что обеспечивает более высокие плотность металла и механические свойства, чем у отливок, полученных в песчаных формах.

Схема получения отливок в кокиле представлена на рис. 6.3.

Рабочую поверхность кокиля с вертикальной плоскостью разъема, состоящую из поддона 1

, двух симметричных полуформ
2
и
3
и металлического стержня
4
, предварительно нагретую до 150…180 ?C покрывают из пульверизатора
5
слоем огнеупорного покрытия (рис. 6.3.а) толщиной 0,3…0,8 мм. Покрытие предохраняет рабочую поверхность кокиля от резкого нагрева и схватывания с отливкой.

Покрытия приготовляют из огнеупорных материалов (тальк, мел, графит), связующего материала (жидкое стекло) и воды.

Рис. 6.3 Технологические операции изготовления отливки в кокиль

Затем с помощью манипулятора устанавливают песчаный стержень 6

, с помощью которого в отливке выполняется полость (рис.6.3.б).

Половинки кокиля соединяют и заливают расплав. После затвердевания отливки 7

(рис. 6.3.в) и охлаждения ее до температуры выбивки кокиль раскрывают (рис.6.3.г) и протягивают вниз металлический стержень
4
. Отливка
7
удаляется манипулятором из кокиля (рис.6.3.д).

Отливки простой конфигурации изготовляют в неразъемных кокилях, несложные отливки с небольшими выступами и впадинами на наружной поверхности – в кокилях с вертикальным разъемом. Крупные, простые по конфигурации отливки получают в кокилях с горизонтальным разъемом. При изготовлении сложных отливок применяют кокили с комбинированным разъемом.

Расплавленный металл в форму подводят сверху, снизу (сифоном), сбоку. Для удаления воздуха и газов по плоскости разъема прорезают вентиляционные каналы.

Все операции технологического процесса литья в кокиль механизированы и автоматизированы. Используют однопозиционные и многопозиционные автоматические кокильные машины.

Литье в кокиль применяют в массовом и серийном производствах для изготовления отливок из чугуна, стали и сплавов цветных металлов с толщиной стенки 3…100 мм, массой от нескольких граммов до нескольких сотен килограммов.

Литье в кокиль позволяет сократить или избежать расхода формовочных и стержневых смесей, трудоемких операций формовки и выбивки форм, повысить точность размеров и снизить шероховатость поверхности, улучшить механические свойства.

Недостатки кокильного литья: высокая трудоемкость изготовления кокилей, их ограниченная стойкость, трудность изготовления сложных по конфигурации отливок.

Изготовление отливок центробежным литьем

При центробежном литье сплав заливается во вращающиеся формы. Формирование отливки осуществляется под действием центробежных сил, что обеспечивает высокую плотность и механические свойства отливок.

Центробежным литьем изготовляют отливки в металлических, песчаных, оболочковых формах и формах для литья по выплавляемым моделям на центробежных машинах с горизонтальной и вертикальной осью вращения.

Металлические формы изложницы изготовляют из чугуна и стали. Толщина изложницы в 1,5…2 раза больше толщины отливки. В процессе литья изложницы снаружи охлаждают водой или воздухом.

На рабочую поверхность изложницы наносят теплозащитные покрытия для увеличения срока их службы. Перед работой изложницы нагревают до 200 0C.

Схемы процессов изготовления отливок центробежным литьем представлены на рис.6.4.

Рис.6.4. Схемы процессов изготовления отливок центробежным литьем

При получении отливок на машинах с вращением формы вокруг вертикальной оси (рис. 6.4.а) металл из ковша 4

заливают во вращающуюся форму
2
, укрепленную на шпинделе
1
, который вращается от электродвигателя.

Под действием центробежных сил металл прижимается к боковой стенке изложницы. Литейная форма вращается до полного затвердевания отливки. После остановки формы отливка 3

Отливки имеют разностенность по высоте – более толстое сечение в нижней части. Применяют для получения отливок небольшой высоты – коротких втулок, колец, фланцев.

При получении отливок типа тел вращения большой длины (трубы, втулки) на машинах с горизонтальной осью вращения (рис. 6.4.б) изложницу 2

устанавливают на опорные ролики
7
и закрывают кожухом
6
. Изложница приводится в движение электродвигателем
1.
Расплавленный металл из ковша
4
заливают через желоб
3
, который в процессе заливки металла перемещается, что обеспечивает получение равностенной отливки
5
. Для образования раструба трубы используют песчаный или оболочковый стержень
8
. После затвердевания металла готовую отливку извлекают специальным приспособлением.

Скорость вращения формы зависит от диаметра отливки и плотности сплава, определяется по формуле:

где: – плотность сплава; – внутренний радиус отливки.

Центробежным литьем изготавливают отливки из чугуна, стали, сплавов титана, алюминия, магния и цинка (трубы, втулки, кольца, подшипники качения, бандажи железнодорожных и трамвайных вагонов).

Масса отливок от нескольких килограммов до 45 тонн. Толщина стенок от нескольких миллиметров до 350 мм. Центробежным литьем можно получить тонкостенные отливки из сплавов с низкой текучестью, что невозможно сделать при других способах литья.

Недостаток: наличие усадочной пористости, ликватов и неметаллических включений на внутренних поверхностях; возможность появления дефектов в виде продольных и поперечных трещин, газовых пузырей.

Преимущества – получение внутренних полостей трубных заготовок без применения стержней, экономия сплава за счет отсутствия литниковой системы, возможность получения двухслойных заготовок, что получается поочередной заливкой в форму различных сплавов (сталь – чугун, чугун – бронза).

Используют автоматические и многопозиционные карусельные машины с управлением от ЭВМ.

Cпециальные способы литья (

Особенности изготовления отливок из различных сплавов

Дефекты отливок и их исправление

Специальные способы литья

Литье под давлением

Литьем под давлением

получают отливки в металлических формах (пресс-формах), при этом заливку металла в форму и формирование отливки осуществляют под давлением.

Отливки получают на машины литья под давлением с холодной или горячей камерой прессования. В машинах с холодной камерой прессования камеры прессования располагаются либо горизонтально, либо вертикально.

На машинах с горизонтальной холодной камерой прессования (рис. 7.1) расплавленный металл заливают в камеру прессования 4

(рис. 7.1.а). Затем металл плунжером
5,
под давлением 40…100 МПа, подается в полость пресс-формы (рис.7.1.б), состоящей из неподвижной
3
и подвижной
1
полуформ. Внутреннюю полость в отливке получают стержнем
2
. После затвердевания отливки пресс-форма раскрывается, стержень
2
извлекается (рис. 7.1.в) и отливка
7
выталкивателями
6
удаляется из рабочей полости пресс-формы.

Рис.7.1. Технологические операции изготовления отливок на машинах с горизонтальной холодной камерой прессования

Перед заливкой пресс-форму нагревают до 120…320 0C. После удаления отливки рабочую поверхность пресс-формы обдувают воздухом и смазывают специальными материалами для предупреждения приваривания отливки. Воздух и газы удаляются через каналы, расположенные в плоскости разъема пресс-формы или вакуумированием рабочей полости перед заливкой металла. Такие машины применяют для изготовления отливок из медных, алюминиевых, магниевых и цинковых сплавов массой до 45 кг.

На машинах с горячей камерой прессования (рис. 7.2) камера прессования 2

расположена в обогреваемом тигле
1
с расплавленным металлом. При верхнем положении плунжера
3
металл через отверстие
4
заполняет камеру прессования. При движении плунжера вниз отверстие перекрывается, сплав под давлением 10…30 МПа заполняет полость пресс-формы
5
. После затвердевания отливки плунжер возвращается в исходное положение, остатки расплавленного металла сливаются в камеру прессования, а отливка удаляется из пресс-формы выталкивателями
6
.

Получают отливки из цинковых и магниевых сплавов массой от нескольких граммов до 25 кг.

Рис.7.2. Схема изготовления отливки на машинах с горячей камерой прессования

При литье под давлением температура заливки сплава выбирается на 10…20 0C выше температуры плавления.

Литье под давлением используют в массовом и крупносерийном производствах отливок с минимальной толщиной стенок 0,8 мм, с высокой точностью размеров и малой шероховатостью поверхности, за счет тщательного полирования рабочей полости пресс-формы, без механической обработки или с минимальными припусками, с высокой производительностью процесса.

Недостатки: высокая стоимость пресс-формы и оборудования, ограниченность габаритных размеров и массы отливок, наличие воздушной пористости в массивных частях отливки.

Изготовление отливок электрошлаковым литьем

Сущность процесса электрошлакового литья заключается в переплаве расходуемого электрода в водоохлаждаемой металлической форме (кристаллизаторе).

При этом операции расплавления металла, его заливка и выдержка отливки в форме совмещены по месту и времени.

Схема изготовления отливок электрошлаковым литьем представлена на рис. 7.3.

Рис.7.3. Схема изготовления отливок электрошлаковым литьем

В качестве расходуемого электрода используется прокат. В кристаллизатор 6

заливают расплавленный шлак
4
(фторид кальция или смесь на его основе), обладающий высоким электро- сопротивлением. При пропускании тока через электрод
7
и затравку
1
выделяется значительное количество теплоты, и шлаковые ванна нагревается до 1700 ?C, происходит оплавление электрода. Капли расплавленного металла проходят через расплавленный шлак и образуют под ним металлическую ванну
3
. Она в водоохлаждаемой форме затвердевает последовательно, образуя плотную без усадочных дефектов отливку
2
. Внутренняя полость образуется металлической вставкой
5
.

Расплавленный шлак способствует удалению кислорода, снижению содержания серы и неметаллических включений, поэтому получают отливки с высокими механическими и эксплуатационными свойствами.

Изготавливаются отливки ответственного назначения массой до 300 тонн: корпуса клапанов и задвижек атомных и тепловых электростанций, коленчатые валы судовых двигателей, корпуса сосудов сверхвысокого давления, ротора турбогенераторов.

Изготовление отливок непрерывным литьем

При непрерывном литье

(рис. 7.4) расплавленный металл из металлоприемника
1
через графитовую насадку
2
поступает в водоохлаждаемый кристаллизатор
3
и затвердевает в виде отливки
4
, которая вытягивается специальным устройством
5
. Длинные отливки разрезают на заготовки требуемой длины.

Используют при получении отливок с параллельными образующими из чугуна, медных, алюминиевых сплавов. Отливки не имеют неметаллических включений, усадочных раковин и пористости, благодаря созданию направленного затвердевания отливок.

Рис. 7.4. Схема непрерывного литья (а) и разновидности получаемых отливок (б)

Особенности изготовления отливок из различных сплавов

Преобладающее количество отливок из серого чугуна изготовляют в песчаных формах. Отливки получают ,как правило, получают без применения прибылей.

При изготовлении отливок из серого чугуна в кокилях, в связи с повышенной скоростью охлаждения при затвердевании, начинает выделяться цементит – появление отбеливания. Для предупреждения отбела на рабочую поверхность кокиля наносят малотеплопроводные покрытия. Кокили перед работой их нагревают, а чугун подвергают модифицированию. Для устранения отбела отливки подвергают отжигу.

Отливки типа тел вращения (трубы, гильзы, втулки) получают центробежным литьем.

Отливки из высокопрочного чугуна преимущественно изготовляют в песчаных формах, в оболочковых формах, литьем в кокиль, центробежным литьем. Достаточно высокая усадка чугуна вызывает необходимость создания условий направленного затвердевания отливок для предупреждения образования усадочных дефектов в массивных частях отливки путем установки прибылей и использования холодильников.

Расплавленный чугун в полость формы подводят через сужающуюся литниковую систему и, как правило, через прибыль.

Особенностью получения отливок из ковкого чугуна является то, что исходный материал – белый чугун имеет пониженную жидкотекучесть, что требует повышенной температуры заливки при изготовлении тонкостенных отливок. Для сокращения продолжительности отжига чугун модифицируют алюминием, бором, висмутом. Отливки изготавливают в песчаных формах, а также в оболочковых формах и кокилях.

Стальные отливки

Углеродистые и легированные стали – 15Л, 12Х18Н9ТЛ, 30ХГСЛ, 10Х13Л, 110Г13Л – литейные стали.

Литейные стали имеют пониженную жидкотекучесть, высокую усадку до 2,5%, склонны к образованию трещин.

Стальные отливки изготовляют в песчаных и оболочковых формах, литьем по выплавляемым моделям, центробежным литьем.

Для предупреждения усадочных раковин и пористости в отливках на массивные части устанавливают прибыли, а в тепловых узлах – используют наружные или внутренние холодильники. Для предупреждения трещин формы изготавливают из податливых формовочных смесей, в отливках предусматривают технологические ребра.

Подачу расплавленного металла для мелких и средних отливок выполняют по разъему или сверху, а для массивных – сифоном. В связи с низкой жидкотекучестью площадь сечения питателей в 1,5…2 раза больше, чем при литье чугуна.

Для получения высоких механических свойств, стальные отливки подвергают отжигу, нормализации и другим видам термической обработки.

Алюминиевые сплавы

Основные литейные сплавы – сплавы системы алюминий – кремний (силумины)

Силумины (АЛ2, АЛ4,

Дата добавления: 2016-09-26; просмотров: 4475; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Похожие статьи:

Оборудование машинной формовки

В практике литейного производства применяют три основных способа машинной формовки: в парных опоках, в стопках и безопочный.

Первым способом форму изготавливают из двух половин — полуформ. Каждую полуформу (верхнюю и нижнюю) подготавливают в своей опоке, чаще всего на отдельной машине (автомате). После установки стержней полуформы соединяют попарно (устанавливают верхнюю на нижнюю) и перед заливкой скрепляют между собой.

При стопочной формовке часто в одной опоке совмещают верхнюю и нижнюю полуформы. Устанавливая опоки одну на другую в стопку, получают блок форм, которые заливают через один общий литниковый стояк. Изготавливают стопку форм на одной машине-автомате.

При безопочной формовке опок не требуется. Изготовливают- ся безопочные формы чаще всего на одной машине-автомате.

Изготовление форм и стержней. Условия и методы уплотнения формовочной смеси

Целью уплотнения формовочной смеси является достижение такой ее плотности и прочности, при которой литейная форма не изменяет свои размеры под влиянием статического, динамического и химико-термического воздействия заливаемого в нее металла и обеспечивает получение точной отливки с гладкой поверхностью.

Существует много методов уплотнения смеси в опоках:

  • ручная набивка опок при помощи трамбовок;
  • встряхивание с последующим уплотнением верхних слоев формы;
  • встряхивание с одновременным прессованием (рис. 5);
  • прессование;
  • прессование с одновременной вибрацией;
  • надув;
  • надув с последующим прессованием;
  • пескометная набивка.

Существует также ряд специальных методов уплотнения форм.

В соответствии с методами уплотнения формовочные машины можно разделить на следующие группы:

  • встряхивающие;
  • встряхивающе-прессовые;
  • прессовые;
  • вибропрессовые;
  • пескодувно-прессовые;
  • пескодувные (пескострельные);
  • пескометы;
  • импульсные.

Вибропрессовая формовочная машина модели 226

Рис. 5. Вибропрессовая формовочная машина модели 226: 1 — штифтоподъемный механизм; 2 — прессовый поршень; 3 — плунжер вибратора; 4 — стол; 5 — станина-колонка; 6 — прессовая траверса; 7 — коленный клапан

По методу извлечения модели из формы различают машины со штифтовым подъемом, с протяжной рамкой, с поворотом полу- формы на 180°.

По конструктивной компоновке и методу агрегатирования формовочные машины разделяются на однопозиционные, двухпозиционные челночные, многопозиционные проходного типа, многопозиционные карусельного типа; по степени автоматизации — на неавтоматические и полуавтоматические; по виду привода — на пневматические, гидравлические, пневмогидравлические, электромагнитные и механические.

Вибропрессовая машина с поршневым прессующим механизмом модели 226. Большинство прессовых формовочных машин, работающих с низким удельным давлением прессования 0,2…0,4 МПа, используются в мелкосерийном производстве. Они снабжаются вибраторами и представляют литой прессовый цилиндр (см. рис. 5), в котором перемещается прессовый поршень 2, несущий на себе стол 4 машины.

Прессовый механизм крепится к станине-колонке 5, на которой установлена прессовая траверса 6. Штифтоподъемный механизм 7 выполнен в блоке с прессовым цилиндром. Пуск воздуха в прессовый цилиндр во многих машинах производится автоматически при установке траверсы и подготовленного комплекта (модель, опока, смесь) в рабочее положение. С этой целью некоторые машины снабжаются автоматическим клапаном давления, который выключает машину по достижении заданного давления прессования.

В вибропрессовых машинах цилиндр вибратора обычно составляет одно целое с прессовым поршнем и размещается в средней его части. В цилиндр запрессована чугунная втулка, которая служит направляющей для плунжера вибратора 3 и обеспечивает воздухораспределение в ходе его работы.

Домик из спичек

История литейного дела насчитывает более пяти тысячелетий. В каменных, глиняных и песчаных формах древние мастера отливали орудия труда, хозяйственную утварь и украшения. Сегодня мы расскажем об этом древнем ремесле. Оно поможет вам в изготовлении различных декоративных изделий, а также деталей для ваших моделей. Для примера проследим, как отливают небольшую шкатулку.

Форму для ее отливки готовят в двух ящиках-опоках, сделанных из хорошо просушенной древесины березы, сосны, бука. Деревянные опоки — это рамы, собранные на шурупах и клее (см. рис. 1 А, В). С двух противоположных сторон каждой рамы укрепляют горизонтальные планки, которые называются выступами, или приливами (рис. 1 Г). В приливах сверлят два отверстия и забивают в них металлические трубки (рис. 1 Д). Чтобы трубки не выпадали, их торцы слегка проковывают. Из толстой проволоки сгибают штыри или соединяют верхнюю и нижнюю опоки (рис. 1 Б, Е). В работе вам потребуются совок, сито, трамбовка, иглы, подъемы, ланцеты, мешочки с так называемым припылом, гладилки, кисти (рис. 2 А-И). Совком засыпают в опоки формовочную смесь, а через сито ее просеивают. Величина ячеек сита — от 1 до 1,5 мм. Для уплотнения формовочной смеси наиболее удобна трамбовка с двумя рабочими частями — цилиндрической и клиновидной (рис. 2В). Иглы (рис. 2Г) служат для прокалывания в песчаной форме каналов, в которые входят газы, образующиеся при заливке металла. Иглы изготавливают из стальных прутков, заточенных на конус. Мешочком с порошком-припылом (рис. 2Ж) припудривают поверхность модели перед формовкой, а также готовую форму перед сборкой и отливкой. Благодаря этому к ней не прилипает формовочная смесь. Кроме того, припудренную модель легко извлекать из готовой формы.

В качестве припыла применяют измельченный древесный уголь, цемент, тальк, графит, а для тонкого фасонного литья — ликоподий (споры болотного растения плауна). Мешочек для порошка делают из марли или другой редкой ткани. Очищают модель от лишнего припыла кистью из перьев (рис. 2И). Подъемы (рис. 2Д) — тонкие стержни, один конец которых согнут в виде кольца, а другой заострен — служат для извлечения модели из формы. На рабочей части крупного подъема нарезают резьбу. Всевозможные повреждения на форме устраняют гладилками, изготовленными из стали или латуни (рис. 2З). Рабочие поверхности гладилок тщательно полируют. Для подрезания формовочной смеси, например при изготовлении литниковой воронки, применяют стальные и латунные ланцеты (рис. 2Е).

Основой для литейной формы служит модель, выполненная в натуральную величину из гипса, дерева, металла, пластмассы и других материалов. Деревянные модели изготавливают из сосны, бука, ольхи, березы. Древесина должна быть хорошо просушена.

Шкатулка, эскизы которой приведены на рисунке, состоит из двух частей — корпуса и крышки.

Чтобы крышку и корпус можно было легко извлечь из формы, их боковые стенки делают с некоторым уклоном. Соединительные петли составляют со стенками единое целое. Шкатулку отливают по частям — для крышки и корпуса делают отдельные формы. Боковые стороны крышки соединяют сена ус» тонкими гвоздями и клеем. На верхнюю сторону крышки переводят через копировальную бумагу нарисованный по клеточкам контур рельефа, который затем вырезают ножом-косяком, полукруглыми и прямыми стамесками. Законченный рельеф шлифуют мелкозернистой шкуркой. Верхнюю и боковые стенки соединяют друг с другом штырями. Так как модель крышки — разъемная, обе ее части должны легко разъединяться без значительных усилий. Разъемную модель крышки окрашивают нитролаком, эмалью или масляной краской. В литейном деле принято в красный цвет окрашивать модели для чугунных отливок, в серый — для стальных, а в желтый — для цветных металлов. Потому оговоримся: несмотря на то, что на нашем рисунке модель шкатулки окрашена в красный цвет, отливать ее можно из любых доступных легкоплавких металлов. Одновременно с крышкой в той же последовательности изготавливают разъемную модель корпуса коробки.

Она состоит из кварцевого песка, в который добавлено 8—12% чуть влажной глины. Песок предварительно промывают, просушивают, а затем просеивают через сито. Глину отмучивают, то есть заливают большим количеством воды и размешивают деревянной мутовкой до образования однородной глинистой жижи. Когда раствор отстоится, песчинки и мелкие камешки опустятся на дно, а щепки, травинки и другие легкие предметы всплывут. Осветленную воду осторожно сливают и ковшом вычерпывают жидкую глину, которую потом помещают в широкую посудину. Сушат глину в теплом сухом месте или на солнце. Потом ее измельчают в порошок, просеивают и высыпают в ящик, коробку или целлофановый пакет.

Чтобы приготовить формовочную смесь 9 частей песка смешивают с 1 частью глиняного порошка, тщательно перемешивают и добавляют примерно 0,5 части воды. Раствор перемешивают до тех пор, пока он не станет однородным. Оптимальную влажность формовочной смеси можно определить так. Берут щепотку смеси, скатывают из нее шарик, а потом подбрасывают вверх. Материал считается пригодным к работе, если шарик не рассыплется или не расплющится при падении. Рассыпавшийся шарик указывает на то, что формовочная смесь недостаточно увлажнена, а расплющенный — на избыток влаги. В первом случае в смесь добавляют чуть-чуть воды, а во втором — сухую песчано-глинистую смесь.

На ровный и гладкий деревянный щит, называемый подмодельной доской, кладут одну из двух частей разъемной модели. В данном случае это будет верхняя сторона крышки. Ее укладывают рельефом вверх. Рядом располагают прямоугольный деревянный брусок — так называемый питатель (рис. 1). Следом за ними устанавливают опоку приливами вниз и при-пыливают поверхности детали и питателя, например, порошком древесного угля (рис. 2). Затем наносят слой облицовочной формовочной смеси, то есть более тщательно просеянной, мелкой и однородной. От нее зависит чистота поверхностей отливки (рис. 3). Постепенно слой за слоем всыпают в опоку наполнительную смесь, постоянно утрамбовывая ее, вначале клиновидным концом трамбовки, а затем плоским (рис. 4). Утрамбовывать надо с таким расчетом, чтобы она была не рыхлой, но и не слишком плотной. В первом случае в формовочной смеси могут образоваться пустоты, которые потом заполнятся металлом и исказят форму отливки; во втором — чрезмерное уплотнение помешает выходу газов при заливке металла.

Заполнив опоку доверху, деревянной или металлической линейкой снимают лишнюю формовочную смесь (рис. 5).

В готовой полуформе на равном расстоянии друг от друга иглами делают вентиляционные каналы. Форму прокалывают с таким расчетом, чтобы вентиляционные каналы не касались модели (рис. 6). В противном случае металл попадает в каналы, нарушая чистоту поверхности отливки.

Далее опоку переворачивают так, чтобы приливы с ушками оказывались сверху (рис. 7). Плоские участки формовочной смеси (поверхности разъема) посыпают сухим песком. Он разделяет две полуформы, не давая формовочной массе слипаться. Песок, попавший на модель, сметают кисточкой из перьев. Сверху устанавливают вторую часть модели, так, чтобы штыри, находящиеся на ней, свободно вошли в глухие отверстия, заранее просверленные в первой детали (рис. 8). На конце питателя устанавливают шлакоуловитель со стояком, а в самой высокой точке модели — так называемый выпор. Стояк — это деревянный усеченный конус, опирающийся на шлакоуловитель — призму с трапецеидальным сечением. Установив сверху вторую опоку и соединив ее с нижней штырями, покрывают модель и литниковую систему тонким слоем припыла и заполняют верхнюю опоку формовочной смесью (рис. 9). Лишнюю формовочную смесь удаляют линейкой (рис. 10). В верхней части формы накалывают вентиляционные отверстия и вырезают литниковую воронку (рис. 11). Вынув из гнезд соединительные штыри, убирают из формы и стояк. Затем осторожно снимают верхнюю полуформу и кладут рядом с нижней. С помощью подъемов извлекают из полуформ модель и литниковую систему (рис. 12).

Раскрытую форму тщательно осматривают, исправляя поврежденные места гладилками и ланцетами. Убедившись, что дефектов нет, внутренние поверхности формы припудривают толченым древесным углем. Затем полуформы накладывают одну на другую, соединяют штырями и устанавливают на постель, состоящую из слоя формовочной смеси (рис. 13). Сверху кладут планки и груз.

Металл или его сплавы, заливаемые в песчаную форму, должны иметь хорошие литейные свойства и прежде всего высокую текучесть. Чтобы это свойство полнее проявлялось, заливаемый расплав должен иметь температуру на 100—150 градусов выше точки его плавления. Свинец плавится при температуре 327 градсов, но температура заливаемого в форму расплава должна быть примерно 500 градусов. Температура плавления олова 232 градусов, оловянный расплав должен иметь температуру 400 градусов. Точка плавления цинка 419 градусов, а температура расплава — 600 градусов. Температура плавления алюминия 660 градусов, а расплав должен иметь температуру 750—800 градусов.

Цинк — один из самых доступных легкоплавких металлов, который обладает высокими литейными свойствами. Запастись цинком можно постепенно. Прежде чем выбросить батарейки для карманного фонаря или радиоприемника, надо извлечь из них и переплавить цинковые стаканчики. Так постепенно у вас соберется нужное количество.

Цинк, олово, свинец легко плавятся в обычной консервной банке на любом огне. Свинец плавят на открытом воздухе или в помещении, оборудованном вытяжным шкафом. Алюминий плавят в глиняных тиглях, помещая их в муфельную печь. В ней можно плавить и бронзу, содержащую 25% олова. Перед загрузкой металла в тигли их стенки и дно припорашивают бурой. О том, как сделать своими руками простейшие муфельные печи, мы уже рассказывали.

Расплав вливают в форму через воронку литника (рис. 13). Заполнив доверху воронку и выпор, металлу дают затвердеть и остыть в течение 20—30 минут. Затем опоки разъединяют и выбивают отливку. Формовочную массу убирают в отдельный ящик для повторного использования при формовке корпуса шкатулки (рис. 14).

У выбитой из формы отливки отпиливают или обрубают зубилом литниковые образования и напильниками стачивают наплывы. Металлической щеткой снимают с отливки пригоревшую формовочную смесь. По сравнению с моделью отливка всегда получается менее четкой, поэтому ее обрабатывают специальными чеканами. Мелким отливкам придают четкость с помощью зубильцев и резцов (рис. 15). В той же последовательности отливают, а затем отделывают нижнюю часть шкатулки — корпус. Готовую шкатулку покрывают защитным декоративным слоем.

Мы рассказали об изготовлении шкатулки, но эта технология годится и для отливки деталей модели, например, якоря, показанного на рисунке.

Источник https://metallolome.ru/transportnoe-oborudovanie-litejnyh/

Источник https://siblitcom.ru/katalog/formovochnoe-oborudovanie/oborudovanie-pgs/formovochnyie-mashinyi/

Источник https://toolstver.ru/teh-info/formovochnaya-smes-dlya-litya-2.html

Понравилась статья? Поделиться с друзьями: