Технологическое заземление медицинского оборудования требования
Согласно Правилам устройства электроустановок, рабочим (или функциональным/технологическим) заземлением называется заземление точки или точек токоведущих частей электроустановки, выполняемое для обеспечения работы электроустановки, но не в целях электробезопасности.
Подразумевается, что оборудование работает надежно, а если сопротивление функционального заземления ≤4 Ом, то проблемы электробезопасности вообще исключены.
Понятие функционального заземления (далее FE) для сетей питания информационного оборудования и систем связи описано в следующих нормативных документах:
- ГОСТ Р 50571.22-2000, п. 3.14 (707.2): «Функциональное заземление: заземление для обеспечения нормального функционирования аппарата, на корпусе которого по требованию разработчика не должен присутствовать даже малейший электрический потенциал (иногда для этого требуется наличие отдельного электрически независимого заземлителя)».
- ГОСТ Р 50571.21-2000, п. 548.3.1: «Функциональное заземление может выполняться путем использования защитного проводника (РЕ-проводника) цепи питания оборудования информационных технологий в системе заземления TN-S.
Допускается функциональный заземляющий проводник (FE-проводник) и защитный проводник (РЕ-проводник) объединять в один специальный проводник и присоединять его главной заземляющей шине (ГЗШ)».
Для правильного понимания определений, данных выше, необходимо договорится о смысле некоторых слов:
- «Как правило» подразумевает, что требование (условие, решение) является преобладающим. Его несоблюдение возможно, но требует весомых обоснований.
- «Допускается» означает, что условие следует выполнять лишь как исключение в силу вынужденных обстоятельств.
- «Рекомендуется» – решение является оптимальным, но его выполнение не обязательно.
- «Может» символизирует правомерный вариант, один из нескольких.
Причины распространения функционального заземления
Первая причина
В 90-х гг. с увеличением распространения вычислительной техники, мощность которой постоянно увеличивалась, возникла необходимость обеспечить ее надежную работу в сетях типа ТN-C.
На рис. 1 показана схема рабочего заземления с использованием PEN-проводника (совмещенного нулевого рабочего N и нулевого защитного PE):
Информация передается по линии связи между 2-мя компьютерами. Возьмем за отправную точку корпусное заземление. Заземление, выполненное проводником РЕN, по которому текут рабочие токи, приводит к разнице потенциалов между корпусами приборов. Получается, что в линию связи вносится разница потенциалов, пульсации, гармоники и высокочастотные помехи при работе оборудования с большими реактивными токами.
Решением проблемы служило локальное применение отдельной системы рабочего заземления, которое обеспечивало устойчивую работу компьютеров. Стоит отметить, что стоимость перехода на «пятипроводную» систему типа TN-S была значительно выше.
Вторая причина
Распространению функционального заземления также способствовало плохое состояние защитного заземления в электроустановках. При поставках «чувствительной» электронной техники от заказчика требовалось создание отдельного заземления.
Третья причина
Возникновение специфических и строгих требований по защите информации, особых лабораторий и других аналогичных объектов также послужило распространению FE.
Основные схемы выполнения функционального заземления
Вариант «А» существует и даже исполняется, но является самым опасным из представленных с точки зрения электробезопасности и безопасности объекта в целом. Подробные объяснения приведены ниже.
Вариант «В» является формальным подходом, выполнение системы с его использованием полностью законно. Это качественное защитное заземление с радиальной схемой разводки, которое используется для вновь строящихся объектов.
Вариант «С» – удобная схема для реконструируемых объектов. С точки зрения воздействия помех на ответственное оборудование данный вариант значительно лучше, чем «В».
Недостатки варианта «А»:
1. Разрушается целостность основной системы уравнивания потенциалов, что приводит к появлению разности потенциалов на независимых системах заземления в процессе эксплуатации.
Причины появления разности потенциалов могут быть такими:
- КЗ на корпус в сети ТN-S до срабатывания системы защиты (
2. Крайне низкие токи короткого замыкания фаза-корпус относительно сетей типа TN-S со всеми вытекающими последствиями (см. рис. 3).
Рис. 3. Схема протекания тока замыкания на корпус аппарата при использовании независимого функционального заземления в сети типа TN
FE не имеет точки соединения с ГЗШ и с нейтралью, и токи короткого замыкания составят только десятки ампер. Ситуация ухудшается отсутствие в цепи устройства защитного отключения. Максимальный ток короткого замыкания составит 36,6 А:
Время отключения составит 30-120 сек, и все это время на корпусе будет присутствовать практически фазное напряжение по корпусным элементам, и протекать ток большой величины, что может привести к возгоранию. При наличии автоматов с номинальным рабочим током более 32 А цепь вообще не отключится.
Повторим: вариант «А» использовать для сетей типа TN-S крайне опасно.
Ф – сетевой фильтр, ФЗ – фильтр заземления.
Вариант «D» демонстрирует соединение FE и ГЗШ с использованием разрядника уравнивания потенциалов. Вариант имеет проблему: он сработает только в случае заноса потенциала при грозовых разрядах, когда разница в напряжении достаточна для срабатывания разрядника (600-900В). В остальных случаях целостность системы основного уравнивания потенциалов электроустановки остается нарушенной и электробезопасности при первичном пробое не обеспечивается.
Вариант «Е» разработан с учетом установки в разрыв проводника уравнивания потенциалов дроссельного фильтра заземления (например, «Квазар Ф-ХХХРЕ», изготовитель ГК «Полигон»).
Варианты «F», «G», «H» показывают построение FE с постепенным улучшением уровня защиты ответственного электрооборудования от помех без проблем с электробезопасностью.
Функциональное заземление в лечебно-профилактических учреждениях
Функциональное заземление относительно ЛПУ осуществляется для обеспечения нормальной стабильной работы высокочувствительной электроаппаратуры при питании от разделительного трансформатора или согласно техническим требованиям на некоторые виды оборудования.
В циркуляре №24/2009 написано, что при отсутствии особых требований изготовителей аппаратуры общее сопротивление растеканию тока заземляющего устройства не должно превышать 2 Ом.
Требование подключения к главной заземляющей шине: «…Устройство независимых заземлителей для защитного и/или функционального заземления медицинского оборудования, не подключенных к ГЗШ, в зданиях с медицинскими помещениями не допускается…».
Взаимное влияние разных систем заземления отдельных помещений при наличии связи через сторонние проводящие части
В качестве примера рассмотрим следующую ситуацию:
Есть 2 помещения с электрооборудованием, в каждом установлена дополнительная система уравнивания потенциалов. Помещение номер №1 подключено к системе защитного заземления (РЕ) и имеет помехообразующую нагрузку. В помещении №2 есть ответственное электрооборудование и организовано подключение к системе FE.
На рисунке видно, что между двумя системами заземления за счет сторонних проводящих частей (в данном случае система отопления) образуется «паразитная» связь с сопротивлением RСП.
В итоге по FE-проводникам протекает часть тока утечки IУ2. Вычислить величину этого тока достаточно сложно. С одной стороны, FE-проводники из медного провода с хорошей проводимостью и небольшим сопротивлением. С другой стороны, водопроводные трубы и прочие сторонние проводящие части в сумме могут обладать значительным сечением, что компенсирует плохую проводимость железа. Поэтому IУ2 = 0,5*IУ допустимое реальное соотношение.
Избавиться хотя бы от одного проводника «А», «В» или «С» невозможно по причине безопасности объекта и электробезопасности персонала.
Как вариант, можно сильно увеличить сечение проводника «D», что пропорционально уменьшит ток утечки IУ2. Но, как вы понимаете, это повлечет значительные затраты.
Заземление для медицинского оборудования
В соответствии с международными и российскими нормативными документами устанавливаются два класса заземлений, которые обозначаются, как защитное (PE) и функциональное (FE).
С тех пор, как в медицине стали применяться электрические приборы и сложная аппаратура, возникла необходимость в разработке мер по безопасности, как самих пациентов и врачей, так и оборудования. В Советском Союзе электробезопасность медицинских установок регулировалась «Инструкцией по защитному заземлению электромедицинской аппаратуры в учреждениях системы Министерства здравоохранения СССР» от 1973 г.
На основании «Правил устройства электроустановок» (ПУЭ п.1.7.29) защитное заземление (PE) необходимо выполнять только в целях электробезопасности объекта.
Функциональное заземление FE обеспечивает работу самой электроустановки и согласно (ПУЭ п. 1.7.30) не применятся в целях электробезопасности объекта.
В последнее время информационно – коммуникационные технологии (ИКТ) всё шире внедряются в медицину, поэтому при определении задач заземления компьютеризированного медицинского оборудования следует руководствоваться также ГОСТ Р 50571.22-2000 п. 3.14 (707.2).
Классы медицинской аппаратуры по электробезопасности
В Российской Федерации любая медицинская электрическая аппаратура подлежит разделению на классы: 01, I, II, III (нормаль «ОН 64-1-203-69 по защите от поражения электрическим током в случае нарушения рабочей изоляции»). Для классов оборудования 01, I обязательным условием является наличие защитного заземления PE. При эксплуатации аппаратуры классов II и III защитное заземление не предусматривается.
Далее рассмотрим некоторые актуальные правила проектирования защитного заземления для различных видов электросетей.
Техническая реализация для IT-сети (с изолированной нейтралью): надежно заземляем все проводящие части медицинского оборудования, которые доступны для прикосновения. Это касается классов 01 и I.
Техническая реализация для TN-C-сети (с глухозаземленной нейтралью): в этом случае проводится зануление всех доступных для прикосновения проводящих частей медицинских приборов классов 01 и I. В данном случае проводимость зануляющих проводников составляет не менее 50% от проводимости фазных проводников. В отдельных помещениях нулевые провода на входе распределительных щитков заземляются повторно. Система TN-C применяется в основном в учреждениях здравоохранения старой постройки.
Техническая реализация для TN-S–сети (с отдельным защитным нулевым проводником): для однофазного медицинского электрооборудования, отнесенного к классу 01, заземление подключается специальным (третьим) проводником. В случае трехфазной сети специалисты используют пятый (отдельно выполненный) защитный проводник (PE). Запрещено использовать в целях защитного заземления нулевой рабочий провод непосредственно у электроприемника медицинской аппаратуры. В отдельных случаях с целью снижения капитальных затрат допускается использование модернизированной TN-C системы заземления — TN-C- S.
Заземление медицинского оборудования, отнесенного к классу I, производится через штепсельную розетку с заземляющим контактом, в сети IT к нему присоединяется заземляющий проводник от магистрали защитного заземления. А в случае проектирования в сети TN-C используется зануляющий проводник от нулевого провода группового щитка помещения.
Функциональное заземление для медицинского оборудования
Современная медицинская техника кроме традиционных медицинских технологий, таких как рентген и ультразвук, использует уже и новые технологии, например, ядерный магнитный резонанс, сканирующие технологии, поддержка жизнеобеспечения (искусственное сердце и лёгкие, гемодиализ и пр.), информационные технологии и др. Поэтому для работы всего этого технического многообразия требуется функциональное заземление FE. Причём разброс требований к сопротивлению заземления достаточно широкий, например, для рентгена – это может быть 10 Ом, а для кардиографа и другой чувствительной аппаратуры, необходимой в операционных, реанимационных и палатах интенсивной терапии — 2 Ом. Здесь возникают определенные сложности для специалистов-электриков. Выход из положения – это установка заземляющего устройства обеспечивающего минимальное сопротивление, которое одновременно может использоваться как для защитного РЕ, так и функционального FE заземлений. Современные решения на основе модульных систем заземления позволяют это сделать достаточно легко и экономично и без каких-либо масштабных земляных работ (см. Модульное заземление).
При использовании высокочувствительного оборудования, пособие по проектированию учреждений здравоохранения (к СНиП 2.08.02-89) предписывает делать отдельное рабочее заземление с сопротивлением 2 Ом, удаленное от любого другого заземляющего устройства на 15 м. Такое заземление необходимо только в том случае, если требование к его выполнению указывается в паспорте или документации к медицинской аппаратуре.
Классификация медицинских помещений
Если взять как пример любую поликлинику, больницу или медицинский центр, то становится понятно, что в структуру данной организации входят не только операционные, реанимационные блоки, кабинеты врачей и помещения для физиопроцедур и диагностики. В состав крупного медицинского учреждения входят также и административные, хозяйственные помещения, блоки питания, лифты и т.д. И для каждой группы таких помещений специалистами разработаны различные меры по электробезопасности. Итак, согласно нормативным документам помещения здравоохранения разделили на 3 группы:
К группе 0 (Гр0 Ст.710.2.5) решено относить такие медицинские помещения, где вообще не могут быть использованы контактирующие проводящие части и приборы. Т.е. в таких кабинетах электроприборы не находятся в физическом контакте с пациентом. Это различные административные и хозяйственные помещения, столовые, а также, например, кабинеты некоторых врачей.
При первом же коротком замыкании (КЗ) или пробое изоляции здесь производится автоматическое отключение.
К группе 1 (Гр1 Ст.710.2.6.) относят помещения, в которых пациент имеет физический контакт с электроприборами (наружно или даже внутренне). Это могут быть комнаты для физиотерапии или гидротерапии в поликлинике, санатории, клинике. В таких помещениях нарушение снабжения электричеством не может привести с серьезной угрозе жизни и здоровью пациента. При первом же КЗ или при перебоях в электропитании в помещении Гр1 автоматически отключается подача электричества на открытые проводящие части приборов.
В качестве защитных мер в таких помещениях специалисты-электрики предлагают:
- двойную изоляцию,
- УЗО (не более 30 мА),
- безопасное сверхнизкое напряжение (БСНН),
- заземленную цепь системы БСНН (ЗСНН).
Уравнивание потенциалов и аварийное электроснабжение может быть использовано здесь в качестве мер дополнительной защиты.
К группе 2 (Гр2 Ст.710.2.7 ) согласно нормативным документам решено отнести помещения, в которых проводятся жизненно важные лечебные процедуры, и контактирующие части электроприборов имеют физический контакт с пациентом. Также в таких помещениях, любая первичная неисправность в системе электроснабжения не должна привести к отказу аппаратуры жизнеобеспечения. Это, как правило, операционные, реанимационные и аналогичные помещения. В Гр2 при первом же КЗ на корпус или пробое изоляции не производится автоматическое отключение электропитания.
В этом случае предусмотрен целый комплекс защитных мер:
- двойную изоляцию,
- медицинская система IT,
- использование медицинских разделительных трансформаторов (МРТ),
- БСНН; ЗСНН.
В качестве дополнительных мер опять же применимо уравнивание потенциалов и аварийное электроснабжение. В клиниках также используются ИБП со временем переключения не более 0,5 с. В операционных и реанимационных помещениях критически важно защитить пациента от поражения электричеством и от микрошока.
При приложении даже самой небольшой разницы потенциалов к сердечной мышце может возникнуть микрошок. Он очень опасен для пациента.
Кратко рассмотрим медицинскую систему питания помещений группы 2. (МЭК 60364 -7 – 710. Ст.710.2.10.). Организация такой сети происходит по технологии IT. В систему обязательно входит: МРТ, система контроля изоляции, система сигнализации и контроля работоспособности.
Заключение
В медицинских помещениях используется как защитное, так и функциональное заземление. Система заземления в этом случае защищает персонал и пациентов от поражения электрическим током, а также поддерживает нормальное функционирование медицинского оборудования.
В дополнение к требованиям МЭК 60364 -7 – 710 на электронное оборудование, используемое в мед.учреждениях, также распространяются и другие нормативные документы, применимые в целом к системам ИКТ.
Технологическое заземление медицинского оборудования требования
ГОСТ Р 50571.22-2000
(МЭК 60364-7-707-84)
ГОСУДАРСТВЕННЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ
Требования к специальным электроустановкам
Заземление оборудования обработки информации
Electrical installations of buildings. Part 7. Requirements for special installations or locations. Section 707. Earthing requirements for the installation of data processing equipment
ОКС 91.140.50; 29.120.50
Дата введения 2002-01-01
1 РАЗРАБОТАН Всероссийским научно-исследовательским институтом электрификации сельского хозяйства (ВИЭСХ) и Всероссийским научно-исследовательским институтом стандартизации и сертификации в машиностроении (ВНИИНМАШ)
ВНЕСЕН Техническим комитетом по стандартизации ТК 337 «Электроустановки жилых и общественных зданий»
2 ПРИНЯТ И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Госстандарта России от 18 декабря 2000 г. N 376-ст
3 Настоящий стандарт представляет собой аутентичный текст международного стандарта МЭК 60364-7-707-84* «Электрические установки зданий. Часть 7. Требования к специальным электроустановкам. Раздел 707. Заземление оборудования обработки информации» с дополнительными требованиями, учитывающими потребности экономики страны
* Доступ к международным и зарубежным документам, упомянутым в тексте, можно получить, обратившись в Службу поддержки пользователей. — Примечание изготовителя базы данных.
4 ВВЕДЕН ВПЕРВЫЕ
5 ПЕРЕИЗДАНИЕ. Апрель 2012 г.
Введение
Настоящий стандарт является частью комплекса государственных стандартов на электроустановки зданий, разрабатываемых на основе стандартов Международной электротехнической комиссии МЭК 364 «Электроустановки зданий». Он представляет собой аутентичный текст международного стандарта МЭК 60364-7-707-84, кроме раздела 1, уточняющего особенности применения настоящего стандарта в национальной энергетике, раздела 3, который исключает разночтения в толковании терминов, и требований (выделенных курсивом), отражающих потребности различных отраслей экономики страны, в том числе и сельскохозяйственного производства, а также приложения В, содержащего примеры оборудования обработки информации, которые входят в область применения настоящего стандарта.
В стандарте сформулированы требования к техническим средствам, направленным на защиту от поражения электрическим током и устранение или ограничение до допустимого уровня перенапряжений, которые могут вызывать сбои в работе оборудования информационных технологий, а также любого другого электронного оборудования, чувствительного к помехам, например медицинского, лабораторного и т.п. К таким средствам относятся заземляющие устройства, в том числе с электрически независимыми заземлителями, устройства уравнивания и выравнивания электрических потенциалов, электрическое разделение сети с помощью разделительных трансформаторов.
Нумерация разделов, пунктов и подпунктов в настоящем стандарте, начиная с раздела 707.4, соответствует принятой в МЭК 60364-7-707-84.
В настоящем стандарте принята та же нумерация рисунков и те же условные обозначения, что и в МЭК 60364-7-707-84.
Требования настоящего стандарта дополняют, изменяют или заменяют требования других частных стандартов комплекса государственных стандартов на электроустановки зданий. Отсутствие ссылки на главу, раздел или пункт частного стандарта означает, что соответствующие требования стандарта распространяются и на данный случай.
1 Область применения
Настоящий стандарт распространяется на электроустановки зданий, применяемые во всех отраслях экономики страны, независимо от их принадлежности и форм собственности, и устанавливает требования к специальным электроустановкам, в частности к заземлению электроустановок, содержащих оборудование обработки информации.
Стандарт предназначен для проектных, монтажных, пусконаладочных и эксплуатационных организаций любых форм собственности и специалистов, разрабатывающих, испытывающих и эксплуатирующих в указанных выше электроустановках заземляющие устройства, в том числе с электрически независимыми заземлителями, устройства уравнивания и выравнивания электрических потенциалов (УВЭП), в том числе локальные УВЭП, системы безопасного сверхнизкого напряжения (БСНН), разделительные трансформаторы, предназначенные для электрического разделения питающих электрических сетей и др.
Требования, дополняющие МЭК 364-7-707-84 и отражающие потребности экономики страны, выделены в тексте курсивом.
Требования настоящего стандарта являются обязательными.
2 Нормативные ссылки
В настоящем стандарте использованы ссылки на следующие стандарты:
ГОСТ 7396.1-89 (МЭК 83-75) Соединители электрические штепсельные бытового и аналогичного назначения. Основные размеры
* На территории Российской Федерации утратил силу ГОСТ 30331.2-95. С 1 июля 2010 г. действует ГОСТ Р 50571.1-2009.
ГОСТ 30331.3-95 (МЭК 364-4-41-92)/ГОСТ Р 50571.3-94* (МЭК 364-4-41-92) Электроустановки зданий. Часть 4. Требования по обеспечению безопасности. Защита от поражений электрическим током
* С 1 января 2011 г. действует ГОСТ Р 50571.3-2009.
ГОСТ Р 50571.10-96 (МЭК 364-5-54-80) Электроустановки зданий. Часть 5. Выбор и монтаж электрооборудования. Глава 54. Заземляющие устройства и защитные проводники
ГОСТ Р 50571.14-96 (МЭК 364-7-705-84) Электроустановки зданий. Часть 7. Требования к специальным электроустановкам. Раздел 705. Электроустановки сельскохозяйственных и животноводческих помещений
ГОСТ Р 51323.1-99 (МЭК 60309-1-99) Вилки, штепсельные розетки и соединительные устройства промышленного назначения. Часть 1. Общие требования
ГОСТ Р МЭК 60950-2002 Безопасность оборудования информационных технологий
3 (707.2) Определения
В настоящем стандарте применяют следующие термины с соответствующими определениями:
3.1 оборудование обработки информации: Блоки электрической или электронной аппаратуры, которые по отдельности либо в системной конфигурации (в сети) проводят сбор, обработку и запоминание данных. Ввод и вывод данных может осуществляться, при необходимости, с помощью электронного оборудования.
3.2 заземление без помех: Соединение с заземляющим устройством (в том числе с электрически независимым), при котором уровень помех, поступающих от внешних источников, не приводит к недопустимым нарушениям в работе оборудования обработки информации либо оборудования, к которому оно подсоединено.
Примечание — Восприимчивость амплитудно-частотных характеристик изменяется в зависимости от типа оборудования.
3.3 значительный ток утечки: Ток утечки на землю, превышающий установленные значения по ГОСТ Р МЭК 60950 для оборудования обработки информации, получающего электроэнергию посредством штепсельных соединителей (вилка, розетка), соответствующих требованиям ГОСТ 7396.1.
3.4 земля (относительная, эталонная): Проводящая электрический ток и находящаяся вне зоны влияния какого-либо заземлителя часть земной коры, электрический потенциал которой принимают равным нулю.
3.5 локальная земля: Часть земли, находящаяся в контакте с заземлителем, электрический потенциал которой под влиянием тока, стекающего с заземлителя, может быть отличен от нуля. В случаях, когда отличие от нуля потенциала части земли не имеет принципиального значения, вместо термина «локальная земля» используют общий термин «земля».
3.6 электроустановка до 1 кВ: Электроустановка, номинальное значение напряжения в которой не превышает 1 кВ.
3.7 проводящая часть: Часть, способная проводить электрический ток.
3.8 открытая проводящая часть: Доступная прикосновению проводящая часть.
3.9 сторонняя проводящая часть: Проводящая часть, не являющаяся частью электроустановки.
3.10 опасная проводящая часть: Проводящая часть, в том числе токоведущая, прикосновение к которой может при определенных условиях вызвать поражение электрическим током.
3.11 проводник: Часть, предназначенная для проведения электрического тока определенного значения.
3.12 токоведущая часть: Проводник или проводящая часть, предназначенный для работы под напряжением в нормальном эксплуатационном режиме работы электроустановки.
3.13 заземление: Преднамеренное электрическое соединение данной точки системы или установки, или оборудования с локальной землей посредством заземляющего устройства.
3.14 функциональное заземление: Заземление для обеспечения нормального функционирования аппарата, на корпусе которого по требованию разработчика не должен присутствовать даже малейший электрический потенциал (иногда для этого требуется наличие отдельного электрически независимого заземлителя).
3.15 заземляющее устройство: Совокупность заземлителя и заземляющих проводников.
3.16 заземлитель: Часть заземляющего устройства, состоящая из одного или нескольких электрически соединенных между собой заземляющих электродов.
3.17 электрически независимый заземлитель (независимый заземлитель): Заземлитель, расположенный на таком расстоянии от других заземлителей, что токи растекания с них не оказывают существенного влияния на электрический потенциал независимого заземлителя.
3.18 заземляющий проводник: Проводник, соединяющий заземляемую точку системы или установки, или оборудования с заземлителем.
3.19 функциональный заземляющий проводник (FE-проводник): Заземляющий проводник в электроустановке до 1 кВ, служащий для функционального заземления.
3.20 заземляющий электрод (электрод заземлителя): Проводящая часть, находящаяся в электрическом контакте с локальной землей непосредственно или через промежуточную проводящую среду, например через слой бетона или проводящее антикоррозионное покрытие.
3.21 потенциаловыравнивающий электрод: То же, что и заземляющий электрод, но используемый для выравнивания электрических потенциалов.
3.22 уравнивание электрических потенциалов: Электрическое соединение проводящих частей друг с другом для достижения их эквипотенциальности.
3.23 защитное уравнивание электрических потенциалов: Уравнивание электрических потенциалов в целях обеспечения электробезопасности путем устранения разности электрических потенциалов между всеми одновременно доступными прикосновению открытыми проводящими частями стационарного электрооборудования и сторонними проводящими частями, включая металлические части строительных конструкций зданий, достигаемое надежным соединением этих частей друг с другом при помощи проводников.
3.24 главная заземляющая шина (главный заземляющий зажим): Шина или зажим, являющаяся частью заземляющего устройства электроустановки до 1 кВ и предназначенная для электрического присоединения нескольких проводников с целью заземления.
3.25 система заземления (заземляющая система): Совокупность заземляющих устройств подстанции, открытых проводящих частей потребителя и нейтрального проводника в электроустановке до 1 кВ.
3.26 тип системы заземления: Показатель, характеризующий отношение к земле нейтрали трансформатора на подстанции и открытых проводящих частей у потребителя, а также устройство нейтрального проводника. Обозначение типов систем заземления — по ГОСТ 30331.2. Различают TN, ТТ- и IT-системы, две первых из которых имеют заземленную нейтраль на трансформаторной подстанции, а третья — изолированную. TN-система по устройству нейтрального проводника в свою очередь делится на TN-S-, TN-C- и TN-C-S-системы.
3.27 зануление: Преднамеренное электрическое соединение нейтральной проводящей части (нейтрального проводника) в электроустановке до 1 кВ с заземленной нейтралью трансформатора на подстанции.
3.28 нулевой рабочий проводник (N-проводник): Проводник в электроустановке до 1 кВ, предназначенный для питания однофазных электроприемников и соединенный с заземленной нейтралью трансформаторов на подстанции.
3.29 электрическое защитное разделение цепей: Отделение электрических цепей друг от друга при помощи разделяющего трансформатора, обмотки которого отделены друг от друга основной, дополнительной либо одной усиленной изоляцией.
3.30 защитный проводник (РЕ-проводник): Проводник в электроустановке до 1 кВ, предназначенный для целей безопасности, соединяющий открытые проводящие части у потребителя с заземляющим устройством.
3.31 совмещенный нулевой рабочий и защитный проводник (РЕN-проводник): Проводник в электроустановке до 1 кВ, совмещающий в себе функции нулевого рабочего и защитного проводников.
3.32 сверхнизкое напряжение (СНН): Напряжение, не превышающее значений, при которых оно не представляет опасности для человека в помещениях с повышенной опасностью, особо опасных и в наружных установках.
3.33 система безопасного сверхнизкого напряжения (система БСНН): Электрическая система в электроустановке до 1 кВ, в которой напряжение не превышает значений СНН:
— в нормальном режиме работы электроустановки и
— при первом повреждении изоляции, включая замыкание на землю в других цепях.
3.34 система защитного сверхнизкого напряжения (система ЗСНН):
Электрическая система в электроустановке до 1 кВ, в которой напряжение не превышает значений СНН:
Технологическое заземление медицинского оборудования требования
НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ
ТРЕБОВАНИЯ К СПЕЦИАЛЬНЫМ ЭЛЕКТРОУСТАНОВКАМ
Электроустановки медицинских помещений
Electrical installations of buildings.
Part 7-710. Requirements for special electrical installations. Medical locations
Цели и принципы стандартизации в Российской Федерации установлены Федеральным законом от 27 декабря 2002 г. N 184-ФЗ «О техническом регулировании», а правила применения национальных стандартов Российской Федерации — ГОСТ Р 1.0-2004 «Стандартизация в Российской Федерации. Основные положения»
Сведения о стандарте
1 ПОДГОТОВЛЕН Рабочей группой специалистов Всероссийского научно-исследовательского института по стандартизации и сертификации в машиностроении (ВНИИНМАШ) и Московского института энергобезопасности и энергосбережения (МИЭЭ) при участии специалистов Общества с ограниченной ответственностью «Завод электрощитового оборудования» на основе собственного аутентичного перевода стандарта, указанного в пункте 4
2 ВНЕСЕН Техническим комитетом по стандартизации ТК 337 «Электроустановки зданий»
4 Настоящий стандарт является модифицированным по отношению к международному стандарту МЭК 60364-7-710:2002 «Электроустановки зданий. Часть 7-710. Требования к специальным электроустановкам. Электроустановки медицинских помещений» (IEC 60364-7-710:2002 «Electrical installations of buildings. Part 7-710: Requirements for special installations or locations. Medical locations»). При этом дополнительные положения и требования, включенные в текст стандарта для учета национальных особенностей в практике проектирования и устройства электроустановок медицинских помещений и особенностей национальной стандартизации, выделены в тексте курсивом
5 ВВЕДЕН ВПЕРВЫЕ
Информация об изменениях к настоящему стандарту публикуется в ежегодно издаваемом информационном указателе «Национальные стандарты», а текст изменений и поправок — в ежемесячно издаваемых информационных указателях «Национальные стандарты». В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ежемесячно издаваемом информационном указателе «Национальные стандарты». Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет
ВНЕСЕНА поправка, опубликованная в ИУС N 11, 2007 год
Поправка внесена изготовителем базы данных
Введение
В настоящее время требования к устройству электроустановок в медицинских помещениях установлены в ведомственной инструкции Министерства здравоохранения и социального развития Российской Федерации и не в полной мере увязаны с комплексом действующих стандартов ГОСТ Р 50571 на электроустановки зданий. Требования к устройству электроустановок медицинских помещений не включены в [1], что затрудняет проектирование, монтаж и наладку электроустановок проектными и монтажно-наладочными предприятиями и организациями, создает условия принятия решений на основе ведомственной инструкции.
Применение в более широких масштабах современного медицинского оборудования и приборов, внедрение современных методик обследования и лечения обусловливает внедрение в практику требований, обеспечивающих безопасность пациентов и медицинского персонала.
В медицинских помещениях необходимо гарантировать безопасность пациентов и медицинского персонала при пользовании медицинским электрооборудованием. При каждом применении медицинского электрооборудования должны соблюдаться соответствующие меры безопасности. Безопасность пациентов и медицинского персонала достигается обеспечением безопасного подключения медицинского электрооборудования к электрической сети, соответствующими мерами безопасности при их эксплуатации и соблюдением требований при техническом обслуживании электроустановки. При применении медицинского электрооборудования предъявляются повышенные требования к обеспечению безопасности пациентов, подвергающихся интенсивной терапии (или находящимся в критическом состоянии) при соответствующей надежности и безопасности электроснабжения.
Меры для обеспечения безопасной и продолжительной работы медицинского электрооборудования и надежной работы медицинских электроустановок устанавливаются в настоящем стандарте. Изменения требований настоящего стандарта в сторону повышения безопасности и надежности являются приемлемыми.
Требования настоящего стандарта изменяют или заменяют некоторые общие требования комплекса стандартов ГОСТ Р 50571, содержащиеся в частях 1-6.
В настоящем стандарте сохранена нумерация разделов, пунктов и подпунктов, принятая в комплексе стандартов ГОСТ Р 50571. Например, нумерация пунктов, следующих за номером 710, соответствует нумерации пунктов стандартов, содержащихся в частях 1-6 комплекса стандартов ГОСТ Р 50571.
Отсутствие в настоящем стандарте ссылок на разделы или пункты, содержащиеся в частях 1-6 комплекса стандартов ГОСТ Р 50571, означает, что установленные в этих частях требования применяются для целей настоящего стандарта.
710 Медицинские помещения
710.1 Область применения
Настоящий стандарт устанавливает требования к электроустановкам, находящимся в медицинских помещениях для обеспечения безопасности пациентов и медицинского персонала. Установленные в настоящем стандарте требования, в основном, распространяются на больницы, поликлиники, частные клиники, помещения для медицинского обслуживания и зубоврачебной практики, оздоровительные центры и специальные медицинские помещения на производственных предприятиях.
1 В случае перепрофилирования помещения может возникнуть необходимость реконструкции электрооборудования помещения в соответствии с требованиями настоящего стандарта. В этом случае следует с особым вниманием отнестись к переоборудованию помещений, в которых будут проводиться кардиологические процедуры.
2 В необходимых случаях требования настоящего стандарта применимы в ветеринарных клиниках. Требования настоящего стандарта не относятся к медицинским электроприборам и электроаппаратам.
3 Требования к медицинским электроприборам и аппаратам приведены в ГОСТ Р 50267.0.
710.2 Нормативные ссылки
В настоящем стандарте использованы ссылки на следующие стандарты:
Примечание — При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет или по ежегодно издаваемому информационному указателю «Национальные стандарты», который опубликован по состоянию на 1 января текущего года, и по соответствующим ежемесячно издаваемым информационным указателям, опубликованным в текущем году. Если ссылочный документ заменен (изменен), то при пользовании настоящим стандартом следует руководствоваться замененным (измененным) документом. Если ссылочный документ отменен без замены, то положение, в котором дана ссылка на него, применяется в части, не затрагивающей эту ссылку.
710.3 Термины и определения
В настоящем стандарте применены следующие термины с соответствующими определениями:
710.3.1 медицинское помещение: Помещение, предназначенное для целей диагностики, лечения (в том числе косметических процедур) и процедур.
Примечание — Для обеспечения электробезопасности пациентов должны применяться дополнительные меры безопасности. Опасности, могущие возникнуть для пациентов, зависят от типа установленного оборудования и условий его применения. Медицинские помещения подразделяют по типу проводимых процедур и используемого оборудования.
710.3.2 пациент: Живое существо (человек или животное), подвергающееся медицинскому или зубоврачебному обследованию или лечению.
Примечание — Человек, подвергающийся косметическим процедурам, рассматривается как пациент в соответствии с требованиями настоящего стандарта.
710.3.3 медицинское электрооборудование: Электрическое оборудование, снабженное не более чем одним присоединением к специальной питающей сети и предназначенное для диагностики, лечения или мониторинга пациента, находящегося под медицинским наблюдением, которое:
— имеет физический или электрический контакт с пациентом и/или
— передает энергию к или от пациента и/или
— обнаруживает передачу энергии к или от пациента.
Примечание — Дополнительные принадлежности, указанные производителем, необходимые для нормальной работы оборудования, относятся к медицинскому оборудованию.
710.3.4 контактирующая часть: Часть медицинского электрооборудования, которая при нормальной работе:
— физически соприкасается с пациентом для выполнения своей функции или
— может быть введена внутрь или
— должна касаться пациента.
710.3.5 группа 0: Медицинское помещение, в котором не предполагается применять контактирующие части.
710.3.6 группа 1: Медицинское помещение, в котором контактирующие части предполагается применять:
— внутренне относительно любой части тела, за исключением случаев, оговоренных в 710.3.7.
710.3.7 группа 2: Медицинское помещение, в котором контактирующие части предполагается применять для выполнения внутрисердечных процедур, в операционных для показательных операций и при выполнении других жизненно важных лечебных процедур, когда прекращение (сбой) электроснабжения представляет опасность для жизни пациента.
Примечание — Внутрисердечные процедуры — это процедуры, при которых электрический проводник вживляется в сердце пациента или по иному контактирует с сердцем и доступ к которому находится вне тела пациента. В этом случае электрический проводник включает в себя изолированные провода, например электроды для электростимуляции или внутрисердечные электроды ЭКГ, или изолированные трубки, наполненные проводящими ток жидкостями.
710.3.8 медицинская электрическая система: Комплекс оборудования, по крайней мере одна единица которого является медицинским электрооборудованием, соединенным с остальным оборудованием функционально или посредством электрических разъемных соединений.
Примечание — В состав медицинской электрической системы входят принадлежности, необходимые для обеспечения работоспособности системы, и приведенные в инструкции по эксплуатации.
710.3.9 окружающая обстановка пациента: Любое пространство, где может произойти намеренный или непреднамеренный контакт пациента с частями медицинской электрической системы или с каким-либо лицом, имеющим контакт с частями системы (см. рисунок 710А).
Примечание — Данное определение применяется, когда положение пациента фиксировано, в других случаях должны рассматриваться все возможные положения пациента.
Рисунок 710А — Пример «окружения пациента»
710.3.10 главный распределительный щит: Электрощит в здании, обеспечивающий распределение энергии между подключенными к нему нагрузками и включение аварийных систем при падении напряжения.
710.3.11 медицинская система IT: Электрическая система IT, в которой соблюдены особые требования для медицинских помещений.
710.30 Основные характеристики
Отнесение медицинских помещений к группам 0, 1 и 2 должно быть согласовано с федеральными органами исполнительной власти и государственного контроля (надзора) в области здравоохранения. Для классификации медицинского помещения по безопасности необходимо, чтобы медицинский персонал указал, какие медицинские процедуры будут проводиться в данном помещении. Помещение классифицируют в соответствии с заявленным его использованием (использование медицинского помещения для целей, отличных от заявленных и требующих отнесения его к более высокой группе, входит в ответственность местных должностных лиц).
1 Класс медицинского помещения по безопасности выбирают в зависимости от группы помещения и его назначения (см. приложение В).
2 Требования к контактирующим частям определяются стандартами на конкретное медицинское электрооборудование.
710.31 Источники питания и построение системы
710.312.2 Типы систем заземления
Применение систем заземления TN-C в медицинских помещениях и зданиях после главного распределительного щита не допускается.
Рабочее заземление
Согласно Правилам устройства электроустановок, рабочим (или функциональным/технологическим) заземлением называется заземление точки или точек токоведущих частей электроустановки, выполняемое для обеспечения работы электроустановки, но не в целях электробезопасности.
Подразумевается, что оборудование работает надежно, а если сопротивление функционального заземления ≤4 Ом, то проблемы электробезопасности вообще исключены.
Понятие функционального заземления (далее FE) для сетей питания информационного оборудования и систем связи описано в следующих нормативных документах:
- ГОСТ Р 50571.22-2000, п. 3.14 (707.2): «Функциональное заземление: заземление для обеспечения нормального функционирования аппарата, на корпусе которого по требованию разработчика не должен присутствовать даже малейший электрический потенциал (иногда для этого требуется наличие отдельного электрически независимого заземлителя)».
- ГОСТ Р 50571.21-2000, п. 548.3.1: «Функциональное заземление может выполняться путем использования защитного проводника (РЕ-проводника) цепи питания оборудования информационных технологий в системе заземления TN-S.
Допускается функциональный заземляющий проводник (FE-проводник) и защитный проводник (РЕ-проводник) объединять в один специальный проводник и присоединять его главной заземляющей шине (ГЗШ)».
Для правильного понимания определений, данных выше, необходимо договорится о смысле некоторых слов:
- «Как правило» подразумевает, что требование (условие, решение) является преобладающим. Его несоблюдение возможно, но требует весомых обоснований.
- «Допускается» означает, что условие следует выполнять лишь как исключение в силу вынужденных обстоятельств.
- «Рекомендуется» – решение является оптимальным, но его выполнение не обязательно.
- «Может» символизирует правомерный вариант, один из нескольких.
Причины распространения функционального заземления
Первая причина
В 90-х гг. с увеличением распространения вычислительной техники, мощность которой постоянно увеличивалась, возникла необходимость обеспечить ее надежную работу в сетях типа ТN-C.
На рис. 1 показана схема рабочего заземления с использованием PEN-проводника (совмещенного нулевого рабочего N и нулевого защитного PE):
Информация передается по линии связи между 2-мя компьютерами. Возьмем за отправную точку корпусное заземление. Заземление, выполненное проводником РЕN, по которому текут рабочие токи, приводит к разнице потенциалов между корпусами приборов. Получается, что в линию связи вносится разница потенциалов, пульсации, гармоники и высокочастотные помехи при работе оборудования с большими реактивными токами.
Решением проблемы служило локальное применение отдельной системы рабочего заземления, которое обеспечивало устойчивую работу компьютеров. Стоит отметить, что стоимость перехода на «пятипроводную» систему типа TN-S была значительно выше.
Вторая причина
Распространению функционального заземления также способствовало плохое состояние защитного заземления в электроустановках. При поставках «чувствительной» электронной техники от заказчика требовалось создание отдельного заземления.
Третья причина
Возникновение специфических и строгих требований по защите информации, особых лабораторий и других аналогичных объектов также послужило распространению FE.
Основные схемы выполнения функционального заземления
Вариант «А» существует и даже исполняется, но является самым опасным из представленных с точки зрения электробезопасности и безопасности объекта в целом. Подробные объяснения приведены ниже.
Вариант «В» является формальным подходом, выполнение системы с его использованием полностью законно. Это качественное защитное заземление с радиальной схемой разводки, которое используется для вновь строящихся объектов.
Вариант «С» – удобная схема для реконструируемых объектов. С точки зрения воздействия помех на ответственное оборудование данный вариант значительно лучше, чем «В».
Недостатки варианта «А»:
1. Разрушается целостность основной системы уравнивания потенциалов, что приводит к появлению разности потенциалов на независимых системах заземления в процессе эксплуатации.
Причины появления разности потенциалов могут быть такими:
- КЗ на корпус в сети ТN-S до срабатывания системы защиты (~110B).
- Внешние электромагнитные поля (близкий разряд молнии) из-за разницы в длине проводников. Иногда измеряется в кВ.
- Занос потенциала на ГЗШ при срабатывании молниеприемника, при этом разница потенциалов достигает исчисляется сотнями кВ. Подробнее написано в статье «Защитное заземление. Основная и дополнительные системы уравнивания потенциала».
2. Крайне низкие токи короткого замыкания фаза-корпус относительно сетей типа TN-S со всеми вытекающими последствиями (см. рис. 3).
Рис. 3. Схема протекания тока замыкания на корпус аппарата при использовании независимого функционального заземления в сети типа TN
FE не имеет точки соединения с ГЗШ и с нейтралью, и токи короткого замыкания составят только десятки ампер. Ситуация ухудшается отсутствие в цепи устройства защитного отключения. Максимальный ток короткого замыкания составит 36,6 А:
Время отключения составит 30-120 сек, и все это время на корпусе будет присутствовать практически фазное напряжение по корпусным элементам, и протекать ток большой величины, что может привести к возгоранию. При наличии автоматов с номинальным рабочим током более 32 А цепь вообще не отключится.
Повторим: вариант «А» использовать для сетей типа TN-S крайне опасно.
Ф – сетевой фильтр, ФЗ – фильтр заземления.
Вариант «D» демонстрирует соединение FE и ГЗШ с использованием разрядника уравнивания потенциалов. Вариант имеет проблему: он сработает только в случае заноса потенциала при грозовых разрядах, когда разница в напряжении достаточна для срабатывания разрядника (600-900В). В остальных случаях целостность системы основного уравнивания потенциалов электроустановки остается нарушенной и электробезопасности при первичном пробое не обеспечивается.
Вариант «Е» разработан с учетом установки в разрыв проводника уравнивания потенциалов дроссельного фильтра заземления (например, «Квазар Ф-ХХХРЕ», изготовитель ГК «Полигон»).
Варианты «F», «G», «H» показывают построение FE с постепенным улучшением уровня защиты ответственного электрооборудования от помех без проблем с электробезопасностью.
Функциональное заземление в лечебно-профилактических учреждениях
Функциональное заземление относительно ЛПУ осуществляется для обеспечения нормальной стабильной работы высокочувствительной электроаппаратуры при питании от разделительного трансформатора или согласно техническим требованиям на некоторые виды оборудования.
В циркуляре №24/2009 написано, что при отсутствии особых требований изготовителей аппаратуры общее сопротивление растеканию тока заземляющего устройства не должно превышать 2 Ом.
Требование подключения к главной заземляющей шине: «…Устройство независимых заземлителей для защитного и/или функционального заземления медицинского оборудования, не подключенных к ГЗШ, в зданиях с медицинскими помещениями не допускается…».
Взаимное влияние разных систем заземления отдельных помещений при наличии связи через сторонние проводящие части
В качестве примера рассмотрим следующую ситуацию:
Есть 2 помещения с электрооборудованием, в каждом установлена дополнительная система уравнивания потенциалов. Помещение номер №1 подключено к системе защитного заземления (РЕ) и имеет помехообразующую нагрузку. В помещении №2 есть ответственное электрооборудование и организовано подключение к системе FE.
На рисунке видно, что между двумя системами заземления за счет сторонних проводящих частей (в данном случае система отопления) образуется «паразитная» связь с сопротивлением RСП.
В итоге по FE-проводникам протекает часть тока утечки IУ2. Вычислить величину этого тока достаточно сложно. С одной стороны, FE-проводники из медного провода с хорошей проводимостью и небольшим сопротивлением. С другой стороны, водопроводные трубы и прочие сторонние проводящие части в сумме могут обладать значительным сечением, что компенсирует плохую проводимость железа. Поэтому IУ2 = 0,5*IУ допустимое реальное соотношение.
Избавиться хотя бы от одного проводника «А», «В» или «С» невозможно по причине безопасности объекта и электробезопасности персонала.
Как вариант, можно сильно увеличить сечение проводника «D», что пропорционально уменьшит ток утечки IУ2. Но, как вы понимаете, это повлечет значительные затраты.
Конструкция и монтаж заземляющей шины
Согласно Правилам устройства электроустановок, рабочим (или функциональным/технологическим) заземлением называется заземление точки или точек токоведущих частей электроустановки, выполняемое для обеспечения работы электроустановки, но не в целях электробезопасности.
Подразумевается, что оборудование работает надежно, а если сопротивление функционального заземления ≤4 Ом, то проблемы электробезопасности вообще исключены.
Понятие функционального заземления (далее FE) для сетей питания информационного оборудования и систем связи описано в следующих нормативных документах:
- ГОСТ Р 50571.22-2000, п. 3.14 (707.2): «Функциональное заземление: заземление для обеспечения нормального функционирования аппарата, на корпусе которого по требованию разработчика не должен присутствовать даже малейший электрический потенциал (иногда для этого требуется наличие отдельного электрически независимого заземлителя)».
- ГОСТ Р 50571.21-2000, п. 548.3.1: «Функциональное заземление может выполняться путем использования защитного проводника (РЕ-проводника) цепи питания оборудования информационных технологий в системе заземления TN-S.
Допускается функциональный заземляющий проводник (FE-проводник) и защитный проводник (РЕ-проводник) объединять в один специальный проводник и присоединять его главной заземляющей шине (ГЗШ)».
Для правильного понимания определений, данных выше, необходимо договорится о смысле некоторых слов:
Читайте также: Группы по электробезопасности: кому какую группу присваивать?
- «Как правило» подразумевает, что требование (условие, решение) является преобладающим. Его несоблюдение возможно, но требует весомых обоснований.
- «Допускается» означает, что условие следует выполнять лишь как исключение в силу вынужденных обстоятельств.
- «Рекомендуется» – решение является оптимальным, но его выполнение не обязательно.
- «Может» символизирует правомерный вариант, один из нескольких.
Причины распространения функционального заземления
Первая причина В 90-х гг. с увеличением распространения вычислительной техники, мощность которой постоянно увеличивалась, возникла необходимость обеспечить ее надежную работу в сетях типа ТN-C.
На рис. 1 показана схема рабочего заземления с использованием PEN-проводника (совмещенного нулевого рабочего N и нулевого защитного PE):
Информация передается по линии связи между 2-мя компьютерами. Возьмем за отправную точку корпусное заземление. Заземление, выполненное проводником РЕN, по которому текут рабочие токи, приводит к разнице потенциалов между корпусами приборов. Получается, что в линию связи вносится разница потенциалов, пульсации, гармоники и высокочастотные помехи при работе оборудования с большими реактивными токами.
Решением проблемы служило локальное применение отдельной системы рабочего заземления, которое обеспечивало устойчивую работу компьютеров. Стоит отметить, что стоимость перехода на «пятипроводную» систему типа TN-S была значительно выше.
Вторая причина Распространению функционального заземления также способствовало плохое состояние защитного заземления в электроустановках. При поставках «чувствительной» электронной техники от заказчика требовалось создание отдельного заземления.
Третья причина Возникновение специфических и строгих требований по защите информации, особых лабораторий и других аналогичных объектов также послужило распространению FE.
Системы заземления
Введение.
Заземление является одним из основных факторов обеспечивающих защиту от поражения электрическим током. В соответствии с главой 1.7 ПУЭ все системы заземления электроустановок можно разделить на две группы:
- системы с глухозаземленной нейтралью к ним относятся система заземления TN (которая в свою очередь делится на системы TN-C, TN-C-S, TN-S) и система заземления TT
- системы с изолированной нейтралью к ним относится система заземления IT
Первая буква аббревиатуры указывает на характер заземления источника питания, а вторая — на характер заземления открытых проводящих частей электроприемника:
- T (от франц. terre — земля) — заземлено;
- N (от франц. neutre — нейтраль) — соединение с нейтралью источника питания (зануление);
- I (от франц. isolé — изолированный) — изолировано от заземления.
Так же в статье встречаются следующие аббревиатуры:
- N — функциональный (рабочий) ноль — нулевой проводник используемый для подключения электроприемника.
- PE — защитный ноль — защитный проводник предназначенный для заземления корпусов электрооборудования.
- PEN — проводник совмещающий функции нулевого защитного и нулевого рабочего проводников.
Теперь подробно разберем перечисленные типы систем заземления.
Система заземления TN
Система TN — это система, в которой нейтраль источника питания глухо заземлена, а открытые проводящие части электроустановки присоединены к глухозаземленной нейтрали источника питания посредством нулевых защитных проводников (п.1.7.3. ПУЭ).
Как уже было написано выше система TN подразделяется на следующие системы (подсистемы): TN-C, TN-C-S, TN-S.
2.1 Система заземления TN-C
Система TN-C — это система TN, в которой нулевой защитный и нулевой рабочий проводники совмещены в одном проводнике на всем ее протяжении. То есть при данной системе применяется общий PEN-проводник который используется как для подключения электроприемников так и для зануления их открытых проводящих частей (корпусов).
Система заземления TN-C схема:
Читайте также: Из-за чего возникает высокое напряжение в сети и как с ним бороться?
Как видно на схеме при данной системе выполняется зануление токопроводящих корпусов электрооборудования, это необходимо для того, что бы при замыкании фазного провода на корпус электроприемника, вследствие его обрыва или повреждения изоляции, произошло короткое замыкание которое, в свою очередь, привело бы к срабатыванию защитной аппаратуры (автоматического выключателя) и отключению напряжения.
Главным недостатком системы TN-C является утеря ее защитных функций в случае отгорания (обрыва) PEN-проводника, при этом на зануленном корпусе электрооборудования может возникнуть опасный для жизни электрический потенциал.
Из-за недостаточной степени защиты в настоящее время данная система не применяется, однако она все еще встречается в зданиях старой постройки. При реконструкции старых зданий система заземления TN-C заменяется на систему TN-C-S или TN-S.
2.2 Система заземления TN-C-S
Система TN-C-S — это система TN, в которой функции нулевого защитного и нулевого рабочего проводников совмещены в одном проводнике в какой-то ее части, начиная от источника питания. Другими словами при данной системе имеется PEN-проводник который, в определенной части этой системы, разделяется на нулевой рабочий (N-проводник) и нулевой защитный (PE-проводник).
Согласно пункту 1.7.135 ПУЭ В месте разделения PEN-проводника на нулевой защитный (PE) и нулевой рабочий (N) проводники необходимо предусмотреть отдельные зажимы или шины для проводников, соединенные между собой. PEN-проводник питающей линии должен быть подключен к зажиму или шине нулевого защитного РЕ-проводника.
Таким образом схема системы заземления TN-C-S будет иметь следующий вид:
Примечание: перемычка между шинами должна иметь сечение не менее сечения PEN-проводника.
Данная система более надежна и обеспечивает более высоки уровень электробезопасности чем система TN-C, кроме того система TN-C-S обеспечивает защиту от обрыва нуля, а ее устройство обходится немногим дороже системы системы TN-C.
Однако эта система так же имеет существенный недостаток — при повреждении PEN проводника на участке сети между источником питания и зданием на всех корпусах электрооборудования соединенных с PE проводником появится опасный для жизни электрический потенциал.
Для предотвращения такого развития событий при системе TN-C-S выполняется повторное заземление PEN проводника, как показано на схеме.
Благодаря невысокой стоимости устройства системы TN-C-S и ее хорошими защитными характеристиками в настоящее время эта система получила наиболее широкое применение.
Подробную инструкцию по устройству заземления в частном доме по системе TN-C-S вы можете посмотреть здесь.
2.3 Система заземления TN-S
Система TN-S — это система TN, в которой нулевой защитный и нулевой рабочий проводники разделены на всем ее протяжении.
Читайте также: Перенапряжение в электросети и в чем его опасность: разновидности и способы защиты
Система заземления TN-S схема:
Данная система обеспечивает высокий уровень безопасности, т.к. при ней исключена возможность возникновения опасного электрического потенциала на корпусах электрооборудования при повреждении питающей линии.
Однако система TN-S не получила широкого распространения ввиду своего главного недостатка — высокой стоимости, которая обусловлена необходимостью выполнения подключения электроустановок потребителей к источнику питания пятью проводами при трехфазном подключении либо тремя проводами при однофазном подключении, при этом отечественная энергетика ориентирована на четырехпроводные схемы трехфазного электроснабжения, это значит, что при решении выполнить подключение по системе TN-S присоединение к существующим сетям электроснабжения будет невозможно, для такого подключения необходимо будет вести отдельную пятипроводную линию от источника питания (трансформаторной подстанции).
Система заземления TT
Система ТТ — это система, в которой нейтраль источника питания глухо заземлена, а открытые проводящие части электроустановки заземлены при помощи заземляющего устройства, электрически независимого от глухозаземленной нейтрали источника.
Система заземления TT схема:
В соответствии с пунктом 1.7.59. ПУЭ питание электроустановок по системе ТТ, допускается только в тех случаях, когда условия электробезопасности в системе TN не могут быть обеспечены. Кроме того в таких электроустановках должно быть выполнено автоматическое отключение питания с обязательным применением УЗО. При этом должно быть соблюдено условие:
RаIа ≤ 50 В,
где Iа — ток срабатывания защитного устройства; Ra — суммарное сопротивление заземлителя и заземляющего проводника, при применении УЗО для защиты нескольких электроприемников — заземляющего проводника наиболее удаленного электроприемника.
Система заземления IT
Система IT — система, в которой нейтраль источника питания изолирована от земли или заземлена через приборы или устройства, имеющие большое сопротивление, а открытые проводящие части электроустановки заземлены.
Система заземления IT схема:
Система IT применяется, как правило, в электроустановках специального назначения, к которым предъявляются повышенные требования безопасности, например лаборатории, угольные шахты, также может применяться в больницах для аварийного электроснабжения и освещения и т.п
Была ли Вам полезна данная статья? Или может быть у Вас остались вопросы? Пишите в комментариях!
Не нашли на сайте статьи на интересующую Вас тему касающуюся электрики? Напишите нам здесь. Мы обязательно Вам ответим.
↑ Наверх
Основные схемы выполнения функционального заземления
Вариант «А» существует и даже исполняется, но является самым опасным из представленных с точки зрения электробезопасности и безопасности объекта в целом. Подробные объяснения приведены ниже.
Вариант «В» является формальным подходом, выполнение системы с его использованием полностью законно. Это качественное защитное заземление с радиальной схемой разводки, которое используется для вновь строящихся объектов.
Вариант «С» – удобная схема для реконструируемых объектов. С точки зрения воздействия помех на ответственное оборудование данный вариант значительно лучше, чем «В».
Недостатки варианта «А»:
1. Разрушается целостность основной системы уравнивания потенциалов, что приводит к появлению разности потенциалов на независимых системах заземления в процессе эксплуатации.
Читайте также: Схема подключения домофона визит в многоквартирном доме
Причины появления разности потенциалов могут быть такими:
- КЗ на корпус в сети ТN-S до срабатывания системы защиты (~110B).
- Внешние электромагнитные поля (близкий разряд молнии) из-за разницы в длине проводников. Иногда измеряется в кВ.
- Занос потенциала на ГЗШ при срабатывании молниеприемника, при этом разница потенциалов достигает исчисляется сотнями кВ. Подробнее написано в статье «Защитное заземление. Основная и дополнительные системы уравнивания потенциала».
2. Крайне низкие токи короткого замыкания фаза-корпус относительно сетей типа TN-S со всеми вытекающими последствиями (см. рис. 3).
Рис. 3. Схема протекания тока замыкания на корпус аппарата при использовании независимого функционального заземления в сети типа TN
FE не имеет точки соединения с ГЗШ и с нейтралью, и токи короткого замыкания составят только десятки ампер. Ситуация ухудшается отсутствие в цепи устройства защитного отключения. Максимальный ток короткого замыкания составит 36,6 А:
Время отключения составит 30-120 сек, и все это время на корпусе будет присутствовать практически фазное напряжение по корпусным элементам, и протекать ток большой величины, что может привести к возгоранию. При наличии автоматов с номинальным рабочим током более 32 А цепь вообще не отключится.
Повторим: вариант «А» использовать для сетей типа TN-S крайне опасно.
Ф – сетевой фильтр, ФЗ – фильтр заземления.
Вариант «D» демонстрирует соединение FE и ГЗШ с использованием разрядника уравнивания потенциалов. Вариант имеет проблему: он сработает только в случае заноса потенциала при грозовых разрядах, когда разница в напряжении достаточна для срабатывания разрядника (600-900В). В остальных случаях целостность системы основного уравнивания потенциалов электроустановки остается нарушенной и электробезопасности при первичном пробое не обеспечивается.
Вариант «Е» разработан с учетом установки в разрыв проводника уравнивания потенциалов дроссельного фильтра заземления (например, «Квазар Ф-ХХХРЕ», изготовитель ГК «Полигон»).
Варианты «F», «G», «H» показывают построение FE с постепенным улучшением уровня защиты ответственного электрооборудования от помех без проблем с электробезопасностью.
Функциональное заземление
Рабочее (функциональное) заземление – заземление точки или точек токоведущих частей электроустановки, выполняемое для обеспечения работы электроустановки ( не в целях электробезопасности ). (ПУЭ п. 1.7.30)
Примечание: фраза «не в целях электробезопасности» — акцент на надежную работу оборудования, но если сопротивление функционального заземления не более 4 Ом, то проблем с электробезопасностью не возникает в принципе.
Определение FE для сетей питания информационного оборудования и систем связи дано в следующих ГОСТах:
«Функциональное заземление: заземление для обеспечения нормального функционирования аппарата, на корпусе которого по требованию разработчика не должен присутствовать даже малейший электрический потенциал ( иногда для этого требуется наличие отдельного электрически независимого заземлителя )» ГОСТ Р 50571.22-2000 п.3.14 (707.2)
«Функциональное заземление может выполняться путем использования защитного проводника (РЕ-проводника) цепи питания оборудования информационных технологий в системе заземления TN-S.
Допускается функциональный заземляющий проводник (FE-проводник) и защитный проводник (РЕ-проводник) объединять в один специальный проводник и присоединять его главной заземляющей шине (ГЗШ)»ГОСТ Р 50571.21-2000 п.548.3.1
ПУЭ 1.1.17. Для обозначения обязательности выполнения требований ПУЭ применяются слова «должен», «следует», «необходимо» и производные от них.
Слова «как правило» означают, что данное требование является преобладающим, а отступление от него должно быть обосновано.
Слово «допускается» означает, что данное решение применяется в виде исключения как вынужденное (вследствие стесненных условий, ограниченных ресурсов необходимого оборудования, материалов и т.п.).
Слово «рекомендуется» означает, что данное решение является одним из лучших, но не обязательным.
Слово «может» означает, что данное решение является правомерным.
FE – рабочее ( функциональное, технологическое ) заземление.
Исторически, в связи с широким распространением вычислительной техники в 90-х годах, возникла необходимость обеспечения надежной работы нового оборудования в сетях типа ТN-C.
При передаче информации по линии связи между двумя компьютерами за опорную точку принимается корпусное заземление. Заземление, выполненное проводником РЕN, по которому текут рабочие токи, приводит к разнице потенциалов между корпусами приборов. Помимо разницы потенциалов вносимых в линию связи, туда же вносятся пульсации, гармоники и высокочастотные помехи при работе оборудования с большими реактивными токами. Локальное применение отдельной системы рабочего ( функционального ) заземления позволяло «малой кровью» обеспечить устойчивую работы вычислительной техники. Разумеется, перемонтаж всей электроустановки на «пятипроводную» систему типа TN-S обходился значительно дороже.
Вторая причина распространения функционального заземления – «безобразное» состояние защитного заземления в существующих электроустановках. Поставщик дорогостоящего цифрового оборудования не без оснований требует от заказчика выполнения отдельного заземления для своей «нежной» техники. Третья причина – специфические требования по защите информации, специализированные испытательные лаборатории и тд.
Основные схемы выполнения функционального заземления представлены на рис.2.
Вариант «А» — наиболее опасный из представленных, с точки зрения электробезопасности и безопасности объекта в целом. Нужно иметь «очень веские» основания для применения данной схемы или быть безграмотным инженером проектировщиком. Далее будут приведены аргументы против использования данной схемы.
Вариант «В» — формальное, но законное выполнение системы функционального заземления. Фактически представляет собой качественное защитное заземление с радиальной схемой разводки. Применяется для вновь строящихся объектов.
Вариант «С» — удобная схема для реконструируемых объектов. Имеет существенное преимущество перед вариантом «В» с точки зрения воздействия помех на ответственное оборудование.
Аргумент против схемы «А» №1: разрушение целостности основной системы уравнивания потенциалов и как следствие появление разности потенциалов на независимых системах заземления в процессе эксплуатации.
Причины появления разницы потенциалов:
1.КЗ на корпус в сети ТN-S до срабатывания системы защиты ( ~110B ).
2.Внешние электромагнитные поля ( близкий разряд молнии ) из-за разницы в длине проводников. Может достигать единиц киловольт.
3.Занос потенциала на ГЗШ при срабатывании молниеприемника. Разница потенциалов достигает сотен киловольт. См. статьи «Защитное заземление. Основная и дополнительные системы уравнивания потенциала» и «Занос потенциала в электроустановку.
Читайте также: Основные сокращения в электротехнике, энергетике.
Аргумент против схемы «А» №2:
крайне низкие токи короткого замыкания фаза – корпус применительно к сетям типа TN-S со всеми вытекающими последствиями.
Рассмотрим простой пример:
Рис.3. Схема протекания тока замыкания на корпус аппарата при использовании независимого функционального заземления в сети типа TN.
Так как функциональное заземление в отличие от защитного не имеет точки соединения с ГЗШ, а соответственно с нейтралью, то токи короткого замыкания составят не сотни и тысячи ампер, как это происходит при защитном заземлении, а всего лишь десятки ампер. Ситуация усугубится тем, что в цепи отсутствует УЗО ( вычислительная техника, томографы, рентгеновское оборудование и тд. ). Максимальный ток короткого замыкания составит 36,6А.
Время отключения составит от 30 до 120 секунд и все это время на корпусе будет присутствовать практически фазное напряжение по корпусным элементам будет протекать достаточно значительный ток ( возможность возгарания ). При наличии автоматов с номинальным рабочим током более 32А цепь вообще не отключится.
Использовать данный вариант для сетей типа TN-S опасно!
В случае варианта «D» FE соединено с ГЗШ посредством разрядника уравнивания потенциалов.
Проблема схемы с разрядником заключается в том, что срабатывать он будет исключительно в случае заноса потенциала при грозовых разрядах, когда разница в напряжении достаточна для срабатывания разрядника ( 600 – 900В ). В остальных случаях целостность системы основного уравнивания потенциалов электроустановки остается нарушенной и проблема электробезопасности при первичном пробое остается актуальной.
Успокоить поставщика «нежного» оборудования, о котором говорилось ранее, можно установкой в разрыв проводника уравнивания потенциалов дроссельного фильтра заземления ( Квазар Ф – ХХХРЕ изготовитель ГК «Полигон» ), как это представлено на схеме варианта «Е».
Далее рассматриваются варианты построения функционального заземления с постепенным улучшением уровня защиты ответственного электрооборудования от помех, без проблем, связанных с электробезопасностью.
Функциональное заземление применительно к учреждениям ЛПУ — для обеспечения нормальной, без помех работы высокочувствительной электроаппаратуры при питании от разделительного трансформатора или согласно техническим требованиям на некоторые виды оборудования.
При отсутствии особых требований изготовителей аппаратуры общее сопротивление растеканию тока заземляющего устройства не должно превышать 2 Ом. См. Циркуляр №24/2009. « …Устройство независимых заземлителей для защитного и/или функционального заземления медицинского оборудования, не подключенных к ГЗШ, в зданиях с медицинскими помещениями не допускается…»
Функциональное заземление в лечебно-профилактических учреждениях
Функциональное заземление относительно ЛПУ осуществляется для обеспечения нормальной стабильной работы высокочувствительной электроаппаратуры при питании от разделительного трансформатора или согласно техническим требованиям на некоторые виды оборудования.
В циркуляре №24/2009 написано, что при отсутствии особых требований изготовителей аппаратуры общее сопротивление растеканию тока заземляющего устройства не должно превышать 2 Ом.
Требование подключения к главной заземляющей шине: «…Устройство независимых заземлителей для защитного и/или функционального заземления медицинского оборудования, не подключенных к ГЗШ, в зданиях с медицинскими помещениями не допускается…».
Источник https://stroitelstvo-gid.ru/elektrika/tehnologicheskoe-zazemlenie-medicinskogo-oborudovaniya-trebovaniya.html
Источник http://www.medelectro.ru/stati/rabochee_zazemlenie/
Источник https://burforum.ru/bezopasnost/shina-funkcionalnogo-zazemleniya.html