Заземление оборудования передвижных установок
IV. Заземление передвижного и переносного электрооборудования
Для обеспечения нормальной работы электроустановок и защиты обслуживающего персонала от поражения электрическим током, применяют заземление. При отсутствии или неверно смонтированной системе заземления, возрастает опасность выхода оборудования из строя и поражения электрическим током человека. Согласно нормативной документации, все электродвигатели должны быть заземлены. Корпус соединяется с системой заземления с помощью проводника, подключенного к контуру заземления. Исключение составляют двигатели, смонтированные на металлической основе, которые заземлены через станину или имеют контакт с землей посредством металлических штырей. В этой статье мы расскажем читателям сайта Сам Электрик, как выполняется заземление электродвигателей по ПУЭ и что еще важно знать об этом мероприятии.
Важное правило
Согласно ПУЭ заземление двигателя делается отдельным проводником. При этом запрещается последовательное соединение электродвигателей с контуром, как показано на схеме снизу:
При повреждении контура, электродвигатели, подключенные после обрыва, становятся потенциально опасными из-за отсутствия заземления. Возникает опасность выхода оборудования из строя. А некорректная работа защиты подвергает персонал опасности. Поэтому такое соединение недопустимо.
Защитное и рабочее заземления
Защитное заземление спасает людей от электрошока, а включенную в сеть аппаратуру от выхода из строя при пробое какого-либо электроприбора на корпус. При наличии молниеотвода – также при ударе молнии.
Рабочее заземление при электрическом ЧП выполняет роль защитного, но оно же обеспечивает нормальную работу электрооборудования. Постоянное рабочее заземление применяется только в промышленном оборудовании. Для бытовой техники считается достаточным заземление через евророзетку. Но в реальных условиях кое-что из «бытовухи» полезно все же заземлить наглухо:
- Стиральную машину. У нее большая собственная электрическая емкость, и во влажном помещении вполне исправная машина, даже включенная в надежно заземленную евророзетку, может безвредно, но ощутимо «щипаться».
- Микроволновая печь. В ней, как известно, работает источник СВЧ – магнетрон большой мощности. При плохом контакте в розетке микроволновка может «сифонить» на опасном для здоровья уровне. На многих микроволновках сзади можно увидеть винтовую клемму под отдельный заземлитель, причем инструкция об этом стыдливо умалчивает: наличие такой клеммы переводит устройство из разряда бытовой техники в промышленное оборудование. А так – ну, это такой декоративный элемент.
- Электродуховка и индукционная плита (варочная поверхность). Внутренняя проводка в них работает в тяжелых условиях, мощность же велика, так что высока и вероятность пробоя.
- Настольный компьютер. Его импульсный блок питания (ИБП) компактности ради устроен так, что нормальную рабочую утечку дает побольше стиралки. От таких плавающих потенциалов на корпусе и производительность снижается, и «глюков» добавляется, и скорость интернета падает. Наглухо заземлить компьютер можно за любой крепежный винт сзади.
У автора этих строк скорость беспроводного интернета после правильного заземления компьютера возросла с 17,8 кбит/с до 310 кбит/с (!).
Какие системы заземления существуют
Существующие системы, позволяют эффективно защитить электродвигатели, другое оборудование и обслуживающий персонал в аварийной ситуации. Они различаются количеством проводников и схемой соединения. Регламентирующим документом является ПУЭ гл. 1.7. правил устройства электроустановок. Системы заземления отличаются схемой соединения и количеством проводников.
По ПУЭ они обозначаются латинскими буквами:
- Т — заземление;
- N — подключение к нейтрали;
- I — изолирование;
- С — объединение функционального и защитного проводов;
- S — разделение по всей сети функционального и защитного проводников.
Согласно ГОСТ Р50571.2-94 нулевым проводам присвоены латинские буквы. Они имеют значения:
- N — функциональный ноль;
- PE — защитный ноль;
- PEN — объединение защитного и функционального ноля.
Выделяют основные системы заземления. Это TN-C, TN-C-S, TN-S, TT и IT:
- В трехфазных четырехпроводных и однофазных двухпроводных линиях используется TN-C. Характеризуется объединенным нулевым проводником с заземляющим. Т.е. от трансформатора до потребителя они идут одним проводником. Это является существенным недостатком. Применялась в старых постройках. В новостройках не применяется.
- TN-C-S система отличается тем, что защитный и нейтральный проводники идут одним совмещенным проводом от трансформатора до распределительного щита, где происходит их разделение. Согласно ПУЭ, монтируется дополнительное устройство заземления.
- В схеме TN-S защитные и нулевые проводники от трансформатора до потребителя идут раздельными проводами.
- отличается тем, что трансформатор подстанции и потребитель имеют собственную систему заземления, которые не связаны друг с другом. Применяют для подключения мобильных электроустановок.
- — особенностью данной системы является изолирование нейтрали от земли или ее соединение через элементы с высоким сопротивлением. Позволяет существенно уменьшить токи утечки на корпус. Применяется в электроустановках, работающих в условиях повышенной опасности. Например, во взрывоопасной зоне.
На принципиальной схеме снизу показаны описанные заземляющие системы.
ПУЭ (глава 1.7 часть 1 общие требования пункт 1.7.33) обязывает заземлять оборудование, питающиеся от сети переменного тока напряжением 42 В и выше, а также электродвигатели постоянного тока напряжением 110 В и выше, в обязательном порядке.
Обслуживающий персонал должен знать, как осуществляется заземление корпусов электродвигателей и для чего оно выполняется.
На рисунке снизу показан двигатель и место подключения заземления:
Отсутствие или неправильно смонтированная система заземления приводит к поражению электрическим током обслуживающий персонал или выход оборудования из строя. Это иллюстрирует рисунок снизу:
Рисунок показывает, как протекает ток через тело человека при наличии заземлителя и при его отсутствии.
В случае пробоя обмотки двигателя (рисунок справа), происходит короткое замыкание, в результате чего на корпусе появляется напряжение, которое не превышает допустимого. Срабатывает схема защиты, и оборудование обесточивается.
При отсутствии заземлителя, на корпусе появляется опасное напряжение, что приводит к летальному исходу обслуживающего персонала (рисунок слева).
Электрикам следует знать, как правильно заземлить электродвигатель. Для этого проводник подключают к заземлителю. Только после этого его соединяют с оборудованием. Нарушать эту последовательность запрещено.
Как рассчитать заземляющее устройство
- При расчете заземляющего проводника следует определить переходное сопротивление растекания тока на землю непосредственно с заземляющего устройства. В соответствии с использованием специальных формул при предварительных расчетах учитывается коэффициент проводимости в промерзающей почве, который берут в справочниках.
- После монтажа заземляющего устройства измеряют его сопротивление. При отклонении от нормативных показателей добавляют количество заземляющих устройств или корректируют проводимость самого грунта, внося в его состав соль, шлак или специальные химические реагенты.
- Кроме того, при расчете искусственного заземления сразу определяют процент естественного заземления и уже на основании данных расчетов проводят анализ количества искусственных заземлителей.
- Заземление следует сварить с металлической полосой или прутом и вмонтировать на глубину более полуметра, образуя общий контур. При расчете учитывается, что растекание одиночного заземлителя равно 22,7 Ом. Горизонтальные и вертикальные электроводы в виде соединительных полос включают параллельно.
- Для исключения взаимного экранирования расстояние между расположенными электродами должно быть больше их длины. Контур делают в виде прямоугольника, который охватывает электродвигатель по всему периметру. Если это сделать невозможно, контур монтируют выносным и присоединяют к внутреннему заземлению двумя или более полосами.
Читайте также Заземление и защитные меры электробезопасности
Для очень мощных электродвигателей заземление должно быть выполнено в соответствии с общей формулой:
Место установки заземления при работе на электродвигателе
Не менее важно монтировать переносные заземлители на электродвигатель при выполнении ремонтных или профилактических работ. Они монтируются на стационарном и передвижном оборудовании.
При этом обслуживающий персонал обязан:
- Монтировать заземлители, если работы выполняются на электроприводе или оборудовании, приводимом им в движение, на котором возможно появление напряжения. Обслуживающий персонал обязан отключить его от питающей сети. Обеспечить защиту от повторного или ошибочного включения, соблюдая правила технических мероприятий. А у двухскоростных двигателей отключают и разбирают обе цепи обмоток.
- При отключении питания допускается установка переносного заземлителя в любом месте, подводящего кабеля от РУ, щита управления, сборкой. Это должно быть видимое заземление.
- Перед началом работ на оборудовании, способном вращаться за счет подсоединенных механизмов (вентиляторов, дымососов, насосов и т.д.), запорной арматуры (задвижек, шиберов и т.п.), механизмы запираются на замок. Или принимаются меры по их механической фиксации, а также затормаживаются роторы электродвигателей или рассоединяются сцепные муфты, например, конвейеров.
- Вывешиваются соответствующие таблички, а персонал обязан использовать индивидуальные меры защиты.
На фото снизу показано переносные заземлители:
При отсутствии стандартного устройства, допускается использовать провода в качестве переносного заземлителя, сечение которых не должно быть меньше питающего кабеля.
Организации производящие ремонтные работы имеют подробные инструкции по технике безопасности, в которых детально изложены этапы подготовки рабочего места и методы проведения ремонта, учитывающих специфику оборудования и производства.
Зачем несколько заземлителей?
Одним заземлителем нельзя обойтись, потому что земля – проводник нелинейный. Ее сопротивление сильно зависит от приложенного напряжения и площади контакта с заземлителем. У одного заземлителя площадь поверхности слишком мала, чтобы обеспечить надежную защиту. Между двумя заземлителями, разнесенными на 1-2 м, возникает потенциальная поверхность, и эффективная площадь контакта с землей возрастает в сотни раз. Но разносить заземлители слишко далеко нельзя: потенциальная поверхность разорвется, и останется просто два заземлителя. Оптимальное расстояние между заземлителями в рыхлом грунте вне зоны вечной мерзлоты – 1,2 м.
Особенности подключения
При проектировании и монтаже любой заземляющей системы основное внимание должно уделяться обеспечению высокой надежности болтовых сочленений и сварных контактов между отдельными её составляющими. Поскольку такие конструкции рассчитаны на длительную эксплуатацию – необходимо минимизировать возможные механические нагрузки на них, а также обеспечить надёжную защиту металлических поверхностей от коррозии.
При монтаже защитного заземления в условиях домашней разводки, прежде всего, необходимо определиться с устройством подводящих питающих линий.
Дело в том, что в домах старой застройки, построенных до 2003 года, нормативными требованиями не предусматривалось наличие в питающей цепи отдельной заземляющей жилы. В таких домах на стороне потребителя (у распределительного щитка) в подводящей проводке имеется всего лишь 2 провода – «фазный» и «нулевой».
Причём последний представляет собой совмещённую нулевую рабочую (PE) и нулевую защитную (N) жилы и согласно международному стандарту обозначается как PEN. Для монтажа заземления в таких домах проводник PEN намеренно расщепляется на две составляющие, после чего отдельная жила N используется в качестве шины заземления. Понятно, что созданная таким образом искусственная конструкция лишь частично соответствует требованиям нормативов, поскольку в многоквартирном доме не удаётся организовать повторное заземление.
В домах современной застройки в подводящей проводке должна иметься ещё одна (третья) жила, предназначенная специально для подключения заземляющего провода электрооборудования и бытовых приборов. При этом общий проводник PEN уже разделён на две отдельные жилы PE и N.
Пример на железнодорожном транспорте
Рассмотрим требования к монтажу заземления на железнодорожном транспорте (стационарные или тяговые электроустановки), указания по которым приводятся в инструкции ЦЭ-191. Согласно этому документу всё действующее электрооборудование должно быть надёжно защищено путём подключения заземляющего проводника к специальной шине.
Той же инструкцией оговаривается величина максимального сопротивления шины заземления, при которой токи утечки достаточны для того, чтобы защитные устройства успевали сработать и своевременно отключить аварийный участок контактной сети.
Отключение повреждённой линии производится с помощью специальных фидерных выключателей, размещённых на тяговой подстанции и настроенных на требуемый ток отсечки (смотрите ПУЭ).
Особые требования предъявляются к конструкциям или агрегатам с повышенным риском попадания на них напряжения контактной сети (из-за пробоя изоляции или при случайном соприкосновении). Всё это оборудование должно иметь надёжное электрическое соединение с основной тяговой или рельсовой сетью.
Такому заземлению подлежат и все металлические конструкции, включая опоры контактной линии с закреплёнными на изоляторах проводами.
О молниеотводах
По ПУЭ объект, снабженный контуром заземления, обязательно должен оборудоваться и молниеотводом. Особенно необходим молниеотвод на даче. Дачные поселки и так места, предпочтительные для ударов молний: ведь дачники, стараясь снабдить себя водой, копают колодцы, забивают скважины на воду, прокладывают водопроводные трубы неглубоко или вообще по поверхности почвы. Дачные же строения большей частью возводятся из горючих материалов, а пожарная охрана далеко, и грозу всегда сопровождает сильный ветер.
Известны случаи, когда целые дачные поселки выгорали от удара молнии. И если на пожарище обнаружится контур заземления, но не найдется остатков молниеотвода, и властям, и соседям виновника долго искать не нужно.
Читайте также Заземление серверной: особенности и требования
Простейший молниеотвод – две заостренных арматурины, торчащие вверх от концов конька крыши на 1,2–1,5 м. С контуром они соединяются стальной проволокой не менее 6 мм, или стальной же шиной 15х3 мм, или полосой из нескольких слоев оцинковки, набранной до нужного сечения – 45 кв.мм.
Шина молниеовода не должна быть шире 60 мм, иначе при ударе молнии произойдет разбрызгивание плазмы, последствия которого разрушительны. Попросту говоря, слишком широкая шина сработает как своего рода антенна, не отводящая молнию в землю, а распространяющая ее в стороны.
Все детали молниеотвода соединяются только сваркой. Слоеную шину нужно по краям проварить прихватами с шагом 50-60 см с захватом всех слоев.
Правила работы с переносными видами
Перечисленные схемные решения относятся к разряду стационарных заземлений, привязанных к конкретному месту. Однако в ряде случаев (для проведения ремонтных работ на отключённых сетях, например) может потребоваться монтаж временных или переносных приспособлений, в основу работы с которыми заложен принцип наложения заземления.
Переносные конструкции изготавливаются в виде оголённой медной жилы, имеющей на одном из своих концов забиваемый в землю металлический штырь, а с другой – специальную медную струбцину, служащую для подсоединения к заземляемой шине.
Некоторые модели переносных или временных устройств защиты вместо штыря имеют ещё одну струбцину, обеспечивающую надёжный контакт с заземляющей конструкцией (заземлителем).
Потребность в переносном заземлении этого класса объясняется необходимостью предупредить появление на обслуживаемом участке питающей цепи опасного напряжения, включённого по ошибке или случайно.
Правила монтажа этих накладных конструкций строго регламентированы действующими руководствами по обустройству заземлений. Ниже приведён перечень основных моментов, на которые следует обратить внимание в процессе работы с ними:
Снятие или разборка конструкции временного заземления осуществляется в обратной последовательности.
Заземление оборудования передвижных установок
E-mail: info@ips-energo.ru
Пн-Пт 8:00 — 18:00
Тел. 8 (812) 913-73-52
8 (800) 201-73-52
Передвижные электроустановки могут получать питание от стационарных или автономных передвижных источников электроэнергии.
Питание от стационарной электрической сети должно, как правило, выполняться от источника с глухозаземленной нейтралью с применением систем TN-S или TN-C-S. Объединение функций нулевого защитного проводника РЕ и нулевого рабочего проводника N в одном общем проводнике PEN внутри передвижной электроустановки не допускается. Разделение PEN проводника питающей линии на РЕ и N проводники должно быть выполнено в точке подключения установки к источнику питания. При питании от автономного передвижного источника его нейтраль, как правило, должна быть изолирована.
При питании стационарных электроприемников от автономных передвижных источников питания режим нейтрали источника питания и меры защиты должны соответствовать режиму нейтрали и мерам защиты, принятым для стационарных электроприемников.
В случае питания передвижной электроустановки от стационарного источника питания для защиты при косвенном прикосновении должно быть выполнено автоматическое отключение питания в соответствии с 1.7.79 с применением устройства защиты от сверхтоков. При этом время отключения, приведенное в табл. 1.7.1, должно быть уменьшено вдвое либо дополнительно к устройству защиты от сверхтоков должно быть применено устройство защитного отключения, реагирующее на дифференциальный ток.
В специальных электроустановках допускается применение УЗО, реагирующих на потенциал корпуса относительно земли.
В точке подключения передвижной электроустановки к источнику питания должно быть установлено устройство защиты от сверхтоков и УЗО, реагирующее на дифференциальный ток, номинальный отключающий дифференциальный ток которого должен быть на 1—2 ступени больше соответствующего тока УЗО, установленного на вводе в передвижную электроустановку. При необходимости на вводе в передвижную электроустановку может быть применено защитное электрическое разделение цепей в соответствии с 1.7.85. При этом разделительный трансформатор, а также вводное защитное устройство должны быть помещены в изолирующую оболочку.
Устройство присоединения ввода питания в передвижную электроустановку должно иметь двой ную изоляцию.
При применении автоматического отключения питания в системе IT для защиты при косвенном прикосновении должны быть выполнены:
автоматическое отключение питания, обеспечивающее время отключения при двухфазном замыкании на открытые проводящие части в соответствии с табл. 1.7.10. Для обеспечения автоматического отключения питания должно быть применено: устройство защиты от сверхтоков в сочетании с УЗО, реагирующим на дифференциальный ток, или устройством непрерывного контроля изоляции, действующим на отключение, или, в соответствии с 1.7.159, УЗО, реагирующим на потенциал корпуса относительно земли.
На вводе в передвижную электроустановку должна быть предусмотрена главная шина уравнивания потенциалов, соответствующая требованиям 1.7.119 к главной заземляющей шине, к которой должны быть присоединены:
защитный проводник передвижной электроустановки с присоединенными к нему защитными проводниками открытых проводящих частей;
проводники уравнивания потенциалов корпуса и других сторонних проводящих частей передвижной электроустановки;
заземляющий проводник, присоединенный к местному заземлителю передвижной электроустановки (при его наличии).
При необходимости открытые и сторонние проводящие части должны быть соединены между собой посредством проводников дополнительного уравнивания потенциалов.
Защитное заземление передвижной электроустановки в системе IT должно быть выполнено с соблюдением требований либо к его сопротивлению, либо к напряжению прикосновения при однофазном замыкании на открытые проводящие части.
При выполнении заземляющего устройства с соблюдением требований к его сопротивлению значение его сопротивления не должно превышать 25 Ом. Допускается повышение указанного сопротивления в соответствии с 1.7.108.
При выполнении заземляющего устройства с соблюдением требований к напряжению прикосновения сопротивление заземляющего устройства не нормируется. В этом случае должно быть выполнено условие:
Допускается не выполнять местный заземлитель для защитного заземления передвижной электроустановки, питающейся от автономного передвижного источника питания с изолированной нейтралью, в следующих случаях:
1) автономный источник питания и электроприемники расположены непосредственно на передвижной электроустановке, их корпуса соединены между собой при помощи защитного проводника, а от источника не питаются другие электроустановки;
2) автономный передвижной источник питания имеет свое заземляющее устройство для защитного заземления, все открытые проводящие части передвижной электроустановки, ее корпус и другие сторонние проводящие части надежно соединены с корпусом автономного передвижного источника при
помощи защитного проводника, а при двухфазном замыкании на разные корпуса электрооборудования в передвижной электроустановке обеспечивается время автоматического отключения питания в соответствии с табл. 1.7.10.
Защита от прямого прикосновения в передвижных электроустановках должна быть обеспечена применением изоляции токоведущих частей, ограждений и оболочек со степенью защиты не менее IP 2X.
Читайте также Заземление электроустановок до 1000В по ПУЭ 7
В цепях, питающих штепсельные розетки для подключения электрооборудования, используемого вне помещения передвижной установки, должна быть выполнена дополнительная защита в соответствии с 1.7.151.
Защитные и заземляющие проводники и проводники уравнивания потенциалов должны быть медными, гибкими, как правило, находиться в общей оболочке с фазными проводниками. Сечение проводников должно соответствовать требованиям:
При применении системы IT допускается прокладка защитных и заземляющих проводников и проводников уравнивания потенциалов отдельно от фазных проводников.
Молниезащита и заземление передвижной электроустановки
Всё большую популярность набирают передвижные электроустановки, которые позволяют решать локальные потребности в электроэнергии. Однако, для работы таких установок требуется надёжное заземление, которое необходимо рассчитывать каждый раз в зависимости от грунта, ну и конечно же молниезащита.
Для решения задачи по подбору оборудования молниезащиты и заземления одной такой передвижной электроустановки, в наш Технический Центр ZANDZ обратились за помощью. Далее рассмотрим какое решение было подготовлено.
Исходные данные:
— объект: установка ПАЭС-2500 контейнерного типа;
— размеры защищаемого объекта: 2,5х11,5х3,7 м;
— удельное сопротивление грунта – 100 Ом*м.
Задача:
Рассчитать заземляющее устройство и систему молниезащиты.
Мероприятия выполнены в соответствии с:
Объект относится к «специальным с ограниченной опасностью», в соответствии с СО и к II категории, согласно РД.
Защита зданий и сооружений от разрядов молнии осуществляется с помощью молниеотводов. Молниеотвод представляет собой возвышающееся над защищаемым объектом устройство, через которое ток молнии, минуя защищаемый объект, отводится в землю. Оно состоит из молниеприемника, непосредственно воспринимающего на себя разряд молнии, токоотвода и заземлителя.
В соответствии с ПУЭ, 1.7.96. В электроустановках напряжением выше 1 кВ сети с изолированной нейтралью сопротивление заземляющего устройства при прохождении расчетного тока замыкания на землю в любое время года с учетом сопротивления естественных заземлителей должно быть
но не более 10 Ом, где I — расчетный ток замыкания на землю, А.
В качестве расчетного тока принимается:
1) в сетях без компенсации емкостных токов — ток замыкания на землю;
2) в сетях с компенсацией емкостных токов:
для заземляющих устройств, к которым присоединены компенсирующие аппараты, — ток, равный 125 % номинального тока наиболее мощного из этих аппаратов;
для заземляющих устройств, к которым не присоединены компенсирующие аппараты, — ток замыкания на землю, проходящий в данной сети при отключении наиболее мощного из компенсирующих аппаратов.
Расчетный ток замыкания на землю должен быть определен для той из возможных в эксплуатации схем сети, при которой этот ток имеет наибольшее значение.
Комплекс мероприятий по обеспечению необходимых требований к системе молниезащиты представлен следующими решениями:
Молниезащита объекта выполнена при помощи молниеприемников-мачт высотой 4 м (ZZ-201-004), которые устанавливаются при пи помощи держателей ZZ-203-002. Подключение к токоотводам выполняется при помощи зажимов ZZ-202-001.
В качестве токоотвода применяется стальная омедненная (толщина медного покрытия не менее 70 мкм) проволока d8 мм (GL-11149).
Установка токоотводов осуществляется при помощи зажимов GL-11704А. Шаг установки зажимов 0,8-1,0 м.
Для соединения проката по длине и в узлах используется универсальный зажим GL-11551A.
В качестве вертикального заземлителя используются омедненные стальные электроды длиной 3 м в местах опусков токоотводов и по центру. В качестве горизонтального заземлителя используется омедненная стальная полоса сечением 30х4 мм, объединяющая все вертикальные электроды. Расстояние до фундамента объекта — не менее 1 м. Заглубление полосы 0,5 — 0,7 м.
Согласно ПУЭ-7 изд., п.1.7.55 — Заземляющие устройства защитного заземления электроустановок зданий и сооружений и молниезащиты 2-й и 3-й категорий этих зданий и сооружений, как правило, должны быть общими.
Подключение к заземляющему устройству выполняется при помощи зажимов ZZ-005-064.
Расчет сопротивления заземляющего устройства:
Сопротивление вертикального электрода:
где ρэкв – эквивалентное удельное сопротивление грунта — 100 Ом·м;
L – длина вертикального электрода — 3 м;
d – диаметр вертикального электрода — 0,014 м;
T – заглубление — расстояние от поверхности земли до заземлителя — 2 м;
где t – заглубление верха электрода — 0.5 м
Сопротивление горизонтального электрода:
где ρ – удельное сопротивление грунта — 100 Ом·м;
b — ширина горизонтального электрода — 0.03 м;
h — глубина заложения горизонтального проводника — 0.5 м;
Lгор – длина горизонтального электрода — 11 м.
Полное сопротивление заземляющего устройства:
где n – количество комплектов, вертикальные заземлители — 3 шт., горизонтальный заземлитель – 1 шт. ;
Kисп – коэффициент использования, 0,81;
Расчетное сопротивление заземляющего устройства составляет 7,77 Ом.
Итоги расчета зоны защиты в соответствии с СО:
Молниеприемник-мачта №1, 2 (ZZ-201-004):
Высота конуса согласно СО табл. 3.4:
Радиус конуса согласно СО табл. 3.4:
Расстояние между молниеприемниками:
Предельное расстояние между молниеприемниками, согласно СО, табл.3.6:
Lmax = 4,75*h = 31,83 м;
Высота провеса отсутствует.
Размещение оборудования и зона защиты показаны на рисунке 1.
Рисунок 1 – Расположение оборудования.
Перечень оборудования и необходимых материалов приведен в таблице 1.
Таблица 1 – Перечень потребности материалов.
№ | Рисунок | Артикул | Наименование | Количество, шт. |
1. | ZZ-201-004 | ZANDZ Молниеприемник-мачта вертикальный 4 м (нерж. сталь) | 2 | |
2. | ZZ-203-002 | ZANDZ Крепление для молниеприёмника к дымоходу (нержавеющая сталь) | 2 | |
3. | ZZ-202-001 | ZANDZ Зажим к молниеприёмнику для токоотводов (нержавеющая сталь) | 2 | |
4. | GL-11149-10 | GALMAR Проволока омеднённая (D 8 мм / S 50 мм²; бухта 10 метров) | 3 | |
5. | GL-11551A | GALMAR Зажим для соединения токоотводов (крашенная оцинкованная сталь) | 5 | |
6. | GL-11704A | GALMAR Зажим к фасаду для токоотвода (крашенная оцинкованная сталь) | 30 | |
7. | ZZ-001-065 | ZANDZ Штырь заземления омедненный резьбовой (D14; 1,5 м) | 6 | |
8. | ZZ-002-061 | ZANDZ Муфта соединительная резьбовая | 4 | |
9. | ZZ-003-061 | ZANDZ Наконечник стартовый | 3 | |
10. | ZZ-004-060 | ZANDZ Головка направляющая для насадки на отбойный молоток | 2 | |
11. | ZZ-006-000 | ZANDZ Смазка токопроводящая | 1 | |
12. | ZZ-008-000 | ZANDZ Насадка на отбойный молоток (SDS max) | 1 | |
13. | ZZ-005-064 | ZANDZ Зажим для подключения проводника (до 40 мм) | 6 | |
14. | ZZ-007-030 | ZANDZ Лента гидроизоляционная | 2 | |
15. | GL-11075-20 | GALMAR Полоса омеднённая (30*4 мм / S 120 мм²; бухта 20 метров) | 1 |
У вас возникли вопросы по заземлению и молниезащите передвижных электростанций? Обращайтесь в Технический Центр ZANDZ!
Похожие записи:
- Для чего нужно заземление оборудования обработки информации
- Заземление электроустановок до 1000В по ПУЭ 7
- ОЗЗ-1-16Ф, оборудование для заземления и закороток (IEK) c доставкой в г. Москва
- АКТ на проведение работ по заземлению
Заземление электроустановок – как его делать правильно?
Работа электрических приборов всегда связана с таким опасным для человека явлением, как напряжение. Выход из строя оборудования часто сопровождается короткими замыканиями, либо возникновением перегрузок.
Электрический ток, в результате неисправности оборудования, может проходить через непредназначеннуюо для этого часть. От прикосновения к корпусу оборудования под напряжением человек получает удар электрическим током. Последствия могут нанести вред здоровью и поставить угрозу для жизни человека.
Для защиты электроустановок от поломок, а человека от опасного воздействия электрического тока применяют заземление. Заземление электроустановок осуществляется за счет электрического соединения с землей или иными элементами металлических частей, не предназначенных для проведения тока.
Заземление оборудования может быть двух видов:
- Защитное заземление — специальное присоединение оборудования с устройством заземления. Целью этой меры является ограничение человека от опасного воздействия при контакте с корпусом прибора.
- Зануление — подсоединение элементов оборудования с заземленной нейтралью с нулевым проводом. Зануление способствует отключению оборудования при возникновении неисправностей в его работе.
Защитное заземление включает в свою конструкцию сам заземлитель, а также проводники. В свою очередь заземлители могут быть естественными и искусственными. К первым относят металлические элементы в конструкции зданий, объектов, которые имеют соединение с землей.
Искусственными являются схема из металлических труб, штырей, уголков, ввинченных в землю и имеющие между собой соединение из полос или проволоки.
Заземляющими проводниками выступают шины из стали или меди, они создают соединение между оборудованием и непосредственно заземлителем. Крепят шины болтами или сварочным способом.
Заземление электродвигателя
Установка электродвигателя по всем нормам и правилам требует проведения работ по заземлению. Для этого проводят расчеты сопротивления тока, которое переходит с двигателя в землю.
После завершения монтажа оборудования, делают замеры сопротивления, на основе полученных данных определяется число заземляющих элементов.
К заземлению электродвигателя приваривают металлические пруты и углубляют в землю на 50 см. Соединительные элементы, электроводы, подключают параллельно. Заземляющий контур делают по периметру, так чтобы охватить двигатель.
Заземление электроустановок
Осуществление мер по созданию безопасных условий для эксплуатации оборудования и проведения заземляющих мероприятий регулируется сводом «Правила устройства электроустановок», утвержденное Министерством энергетики РФ от 8 июля 2002 года.
Документ определяет основные системы заземления. Рассмотрим варианты, установленные ПУЭ заземления установок подробно:
- Заземление TN-C — применяются для трехфазных четырёхпроводных и двухпроводных сетей с одной фазой. Система заземления сетей осуществляется на давних сооружениях, отличается своей простотой и недорогим исполнением. Безопасность такой системы не высока.
- Заземление TN-C-S — используют для реконструкции системы TN-C на старых зданиях. Благодаря такому типу заземления возможно установка компьютерного оборудования и телекоммуникаций. В системе TN-C-S нулевые и защитные проводники используется только на части общей системы, чаще всего на вводном приборе. Применение такой системы очень важно для переоборудования большого сектора устаревших сетей объектов и зданий.
- Заземление TN-S — распространенная схема для европейских стран. В ней нулевые рабочие и защитные стержни размещены порознь. Все части электроустановок обладают собственными нулевыми проводниками для защиты. Такая комплектация понижает возможность появления электромагнитных помех. Если схема заземления оснащена пристроенным трансформатором, то это позволяет не применять повторное заземление и снизить к минимуму все возможные помехи.
- Заземление TT — система предполагает прямую связь трансформаторной подстанции, необходимых частей для заземления с землей. Элементы электроустановки здания или объекта соединяется с землей напрямую через заземлитель. Он, в свою очередь, не зависит от заземляющих элементов нейтрали подстанции.
- Заземление IT — система создает изоляцию для нейтрали источника питания от земли, а также может быть заземлена путем использования устройств с большим показателем сопротивления. Доступные части, способные к проведению напряжения, заземлены. Возможная утечка незначительна и не сказывается на функционировании всего оборудования. Схема применима для электроустановок объектов с высокими требованиями к уровню безопасности.
Данные системы заземления отличаются принципом построения и количественным применением заземляющих стержней. Буквы характеризует заземление источника питания и элементов оборудования.
Для источников обозначением является первая буква, для электроустановок вторая:
- Т — соединение нейтрали источника питания с землей.
- I — изоляция элементов пропускающих ток.
- Т — для электроустановок, соединение частей с землей.
- N — связь между частями установки и точек заземления источника питания.
- Буквенное обозначение C характеризует принцип устройства проводников, которое создается объединяющим стержнем заземления.
- S — способ устройства формируется отдельными проводниками.
По ПУЭ перечисленные способы заземления электроустановок применяется для устройств с напряжением до 1000 В. Для систем с выше 1000 В применяются иные системы заземления.
Заземление электроустановок регламентируется ГОСТом, в зависимости от типа оборудования.
Для зданий применяется действующий стандарт от 2000 года «Электроустановки зданий», в котором сформулированы основные положения по проведению мер заземления оборудования. ГОСТ применим ко всем электроустановкам зданий, используемых во всех секторах экономики государства.
Заземление установок на промышленных предприятиях
Производственные предприятия сталкиваются с такой ситуацией, когда напряжение в корпусе поврежденного агрегата проявляется не только между открытыми частями и землей, но между корпусами разных приборов, корпусом и металлическими составляющими здания, трубопроводами из металлических материалов и другие соприкосновения.
В этом случае на промышленном предприятии должна быть установлена целая система заземления, охватывающая и связывающая между собой элементы оборудования, которые могут проводить ток, и металлические части технологических оборудований и здания в целом. Эти мероприятия позволят уровнять потенциалы всех элементов цехов.
Таким образом совершается заземление станков в цеху под одной системой. Также к заземлению подключаются технологическое оборудование, чтобы избежать аварийных ситуаций с нахождением их частей под напряжением.
Защитное заземление может не выполняться на приборах с номиналом напряжения 42 В для переменного тока, для постоянного тока показатель должен составлять 100 В.
Заземлению на промышленных предприятиях подлежат корпуса машин, станков, агрегата, обмотки, приводы, каркасы, конструкции из металла, оболочки силовых кабелей, проводов.
Защита передвижных установок
Рассматриваемые ранее методы применимы к стационарному оборудованию. Заземление передвижных электроустановок выполняет с учетом требований к сопротивлению или к напряжению. Заземлитель устанавливается за счет соблюдений значений сопротивления, которые не должны быть более 25 Ом.
В некоторых случаях возможно не использование местного заземляющего устройства для оборудования с автономным питанием с нейтралью изолированной от земли.
Чаще всего применяется для оборудования, которое не питает другие установки, а также когда источники питания имеют свои заземлители и все части электроустановки соединены с корпусом источника питания.
Оборудование с автономными источниками питания и изоляцией для нейтрали должны быть оснащены контролем сопротивления изоляции. Также необходим постоянный доступ для осуществления проверочных работ исправности функций изоляции.
Установка и безопасность
Разнообразие электроустановок и условий по их эксплуатации создает большое количество вариаций, связанных с монтажом оборудования, ремонта и правил по работе с приборами и агрегатами.
Использование электроустановок в работе промышленных предприятий, организаций, электросистем зданий и объектов должно соответствовать стандартам и правилам и давать гарантию электробезопасности.
Существующие меры позволяют избежать нежелательных пробоев, поломок оборудования, создания аварийных ситуаций, а также ситуаций с угрозой здоровью и жизни человека.
Заземление и применяемые защитные меры электробезопасности должны быть осуществлены в соответствии с требований нормативных актов, правил требований, стандартов.
Все существующие способы заземления электроустановок можно объединить выполнением условий по соединению частей и элементов электроустановок, которые могут проводить ток и быть под напряжением, с заземляющим проводником в виде шины и контуром заземления.
Заземление проводится для всех составных частей, которые могут при пробое изоляции оказаться под действием напряжения. Для различных зданий, предприятий может проводиться заземление одной установки, а в некоторых случаях объединение всех компонентов одного цеха для заземления.
Последний вариант используется, чтобы обезопасить от пробоя различные установки и станки, технологическое оборудование, которые могут соприкасаться и взаимодействовать.
Работы по осуществлению заземлений электроустановок должны совершаться высококвалифицированными специалистами. От правильности совершения работ по монтажу заземления зависит работа всех электроустановок, которая влияет на функционирование всего здания или предприятия.
Неправильное исполнение заземления приводит к появлению напряжения в тех частях устройств, на которых оно не предусмотрено по правилам эксплуатации. Такая небезопасная работа оборудования может привести к остановке, поломке, а также привести все устройство в непригодное состояние.
Ущерб может заключаться не только в поломке установок и выхода из строя, но и создания аварийных ситуаций, которые могут повлечь порчу имущества и иного оборудования. Самым опасным является воздействие напряжение на человека — от проблем со здоровьем до летального исхода.
ООО «ГОРИНКОМ» выполняет полный комплект услуг по заземлению электроустановок для зданий и предприятий. Опытные квалифицированные сотрудники обеспечат надежность работ по заземлению оборудования.
Контур заземления в частном доме: советы по монтажу и материалам на сайте Недвио
Каждая стационарная установка для сварки имеет, как правило, отдельный заземляющий контур. Один кабель для заземления прикрепляется к металлическому основанию аппарата, а другой — к вкопанному в землю стержню из металла.
Подобное соединение оборудования с землей обеспечивает равенство потенциалов между ними. Если корпус окажется под воздействием напряжения, случайное прикосновение человека не приведет к удару электрическим током. То же самое касается и других узлов аппарата, через которые проходит ток.
Необходимость заземлять сварочное оборудование
Сварочный аппарат стационарного типа, как правило, оснащен индивидуальным заземляющим контуром вне зависимости от схемы подключения к электросети. То, как заземляется сварочное оборудование, в этом случае условно выглядит так: с одной стороны заземляющий провод крепится к металлической оболочке прибора, а с другой – к железному штифту, вкопанному в землю.
Читайте также: Устройство и особенности эксплуатации сверлильных станков
Такой контакт сварочного агрегата и грунта создает между ними равенство потенциалов. Благодаря этому, если корпус прибора будет под напряжением, а мастер прикоснется к нему, – человека не ударит током. Эта система работает и для других элементов, проводящих электричество. Учитывая то, что при работе со сваркой используется ток высокого напряжения, пренебрежение заземлением может быть чревато трагичными последствиями.
Технология проведения работ
Выбираем место размещения заземлителей. Разумеется, недалеко от дома (объекта), чтобы не пришлось прокладывать длинный проводник, который придется механически защищать. Желательно, чтобы вся площадь контура находилась на территории, которую вы контролируете (являетесь собственником). Чтобы в один прекрасный момент, ваша защитная «земля» не была выкопана пьяным экскаваторщиком. Так что забивать штыри за забором не будем.
Подойдет огород (за исключением картофельной грядки), палисадник, клумба возле дома. Возделываемые участки предпочтительнее, они регулярно поливаются. А дополнительная влага в земле пойдет на пользу заземлению. Если ваш грунт обладает низким удельным сопротивлением — можно установить заземление на площадке, которая затем будет покрыта асфальтом или плиткой. Под искусственным покрытием земля не пересушивается. Да и риск повредить контур заземления минимален.
Разумеется, необходимо учитывать дальнейшие планы. Если в месте установки контура через год появится гараж со смотровой ямой — лучше сразу выбрать место поспокойнее.
В зависимости от формы площадки, выбираем порядок расположения электродов: в линию, или треугольником.
Важно! Вне зависимости от расположения, вертикальных заземлителей должно быть не менее трех.
Если выбран треугольник — размечаем площадку соответствующей формы со сторонами 2.5–3 метра. Копаем траншею в форме равностороннего треугольника на глубину 70–100 см, шириной 50–70 см. Мы знаем, что все заземлители соединяются между собой. Проводник должен быть углублен на расстояние не менее 50 см, с учетом минимального уровня грунта (например, вскопка грядки). Если сверху будет уложено покрытие — его толщина в расчет не берется. Только чистый грунт.
Можно выбрать весь грунт, не только по периметру траншеи. Получится треугольная яма глубиной 0.7–1.0 м. Готовый контур можно будет засыпать грунтом с низким удельным сопротивлением. Например, золой или пеплом. Соли проникнут в землю, и будут способствовать снижению общего сопротивления растекания тока.
После чего, по углам ямы (траншеи) начинаем забивать электроды.
Параметры заземлителей (рассматриваем вертикальное расположение)
- Сталь без гальванического покрытия:
Круг — диаметр 16 мм.
Труба — диаметр 32 мм.
Прямоугольник или уголок — площадь поперечного сечения 100 мм².
- Сталь оцинкованная
Круг — диаметр 12 мм.
Труба — диаметр 25 мм.
Прямоугольник или уголок — площадь поперечного сечения 75 мм².
Читайте также: Балеринка по дереву: регулируемое сверло или как сделать большое отверстие
Круг — диаметр 12 мм.
Труба — диаметр 20 мм.
Прямоугольник или уголок — площадь поперечного сечения 50 мм².
Важно! Категорически запрещено бурить скважины, а затем погружать в них заземлители. При таком способе монтажа сопротивление увеличивается в разы.
Грунт должен плотно облегать металлическую поверхность заземлителя. Красить электроды запрещено!
А как быть, если по расчетам длина каждого из трех электродов превышает 1.5–2 метра? Есть небольшие секреты.
- Электроды забивают не кувалдой, а вибратором, отбойным молотком с насадкой, или перфоратором. Кувалда подойдет для высоты чуть более 1 метра. Это вариант для идеального грунта с наименьшим сопротивлением.
- Совершенно не обязательно устанавливать трехметровую стремянку. Длинные электроды соединяются между собой по мере погружения в грунт. Если вы купили фабричный комплект — заземлители составные, можно набрать из сегментов любую длину.
- Для кустарного изготовления также есть способ забить в землю 4 метровый уголок. Нарезаем электрод на куски по 1.5 метра. Забиваем первый сегмент. Привариваем к нему следующий — забиваем далее. И так до расчетной глубины.
Информация: часто бывает, что заземлитель упирается в монолитное препятствие (например, на глубине 2.5 метра), а расчетная глубина — 3.5 м. В этом случае электрод просто обрезается, а в контуре заземления будет добавлен еще один стержень, для компенсации потерянной длины.
Соединяем электроды проводником. Если арматура стальная — лучше всего подойдет сварка. Медные стержни соединяются болтовой стяжкой, проводник должен иметь сечение не менее 30% от сечения электродов.
После сборки контура, проводим замеры сопротивления растекания тока. Требования к контуру заземления для индивидуального жилья — 10 Ом. Измерение лучше доверить сертифицированным специалистам, у которых имеется соответствующее оборудование. Тем более, что при получении ТУ от энергетиков, вам все равно придется представить систему заземления для измерений. Если сопротивление выше нормы — добавляем электроды и привариваем их к контуру. Пока не получим норму.
Зануление, заземление, заземлитель – в чем разница
Цель данной статьи – дать развернутое описание заземления и всего, что с ним связано. В первую очередь необходимо обозначить разницу между этими понятиями. Не стоит путать заземление, заземлитель и заземляющее устройство при наладке сварочного оборудования. Так, заземление – это запланированный контакт оборудования или некоторых его частей с заземляющим устройством.
Иными словами, заземление – это процесс, а заземляющее устройство и заземлитель – нет. Заземляющее устройство представляет собой ансамбль заземлителя и заземляющих проводников. Заземлителем же может быть один либо несколько элементов, проводящих ток. Чаще всего эту роль играет кабель. Его главная задача – соединить сварочный аппарат с землей и передавать на нее вышедшую из-под контроля электроэнергию.
То, как заземляется сварочное оборудование, определяется целью и функциями заземляющего устройства. Так, последние условно подразделяются на три типа: защитные, грозозащитные и рабочие. Их задача обозначена в самом названии: защитные устройства оберегают людей и животных от удара током при соприкосновении со сварочной установкой. Они пригодятся в случае, если кабель фазы соприкоснется с металлической частью установки, не предназначенной для передачи тока, тем самым передав на нее напряжение.
Грозозащитные устройства направляют электричество от удара молнии в землю, заземляя при этом стержневые или тросовые разрядники и молниеотводы.
Рекомендовано к прочтению
- Резка меди лазером: преимущества и недостатки технологии
- Виды резки металла: промышленное применение
- Металлообработка по чертежам: удобно и выгодно
Рабочие устройства, отвечающие за заземление оборудования, обеспечивают его бесперебойный режим работы в штатных и в аварийных условиях. Иными словами, защита такого типа нацелена не на безопасность мастера, а на обеспечение исправного функционирования агрегата.
Читайте также: Характеристики и разновидности дюбель-гвоздей 6х40 мм
Существуют также устройства, которые одновременно выполняют и защитные, и рабочие функции. По своей природе заземлители разделяются на естественные и искусственные. Разница не в том, что одни рукотворные, а другие – нет. Дело в том, что естественные изначально задумывались не как заземлители. Это может быть арматура в металлическом каркасе бетонного строения или водопровод. Важно знать, что нельзя использовать в качестве заземлителя трубы, имеющие изоляционное покрытие. А вот искусственные – это заземлители, которые были специально созданы для этих целей.
Зануление – это факт создания связи между металлическим каркасом электрического прибора и нейтральности генератора или трансформатора. Как правило, для этого используется отдельный кабель, который так и называется – нулевой. Функция зануления заключается в создании возможности автоматического отключения питания от прибора, если произойдет короткое замыкание. Так, при возникновении проблемы аварийный участок будет моментально обесточен предохранителем или автоматом.
Наиболее распространенные ошибки
При создании контура следует избежать ряда ошибок:
- Если решено обратиться к электромонтажникам, необходимо особое внимание уделить качеству материалов, которые рабочие собираются использовать. Некоторые подрядчики стремятся удешевить свои услуги путем экономии на электродах, устанавливая проводники с небольшой проводимостью (к примеру, заржавевшую арматуру). Некачественные материалы значительно снижают эффективность защиты или даже делают затею вовсе бессмысленной.
- Устройство заземления находится на слишком большом расстоянии от дома.
- Установка контура в сухом месте. Вода улучшает проводимость — чтобы система работала эффективно, она должна находиться во влажном месте. Если такое место отсутствует, придется задуматься об искусственном увлажнении.
- Объединение заземлительного контура с молниезащитой. Если в распредщите не вмонтировано устройство УЗИП, размыкающее цепь в виде ответной реакции на сверхзаряд, значительный ток из молниеприемника выведет из строя электрическое оборудование.
Контур заземления — важнейшая мера, обеспечивающая безопасность пользования электрическими приборами в частном доме. Если решено выполнить все работы своими руками, необходимо аккуратно придерживаться всех технических правил и рекомендаций, в том числе по технике безопасности. Если уверенности в своих силах недостаточно, лучше обратиться за помощью к специалистам.
Основные требования к заземлению сварочного оборудования
Если говорить о том, как заземляется сварочное оборудование, то важно знать параметры заземлителя. Кабель должен быть выполнен из меди, а его диаметр не должен быть меньше 6 мм. Вместо провода можно использовать арматуру, тогда величина ее сечения начинается от 12 мм. Заземлитель крепится к корпусу устройства при помощи специального болта, при этом важно его как-то обозначить (например, подписать «земля»). В случае с электродуговой сваркой, заземление также необходимо обеспечить для зажима вторичной обмотки, который соединяется с проводником, подключенным к обрабатываемой поверхности.
Если провод подачи тока имеет две жилки, то в качестве заземлителя трансформатора аппарата нельзя применять кабели «фаза» и «ноль».
Перед тем как заземлять сварочное оборудование, важно ознакомиться с основными правилами:
- все элементы установки, не подающие ток, должны быть соединены с заземляющим контуром;
- все участки устройства, подключенные к заземляющему контуру, должны крепиться к нему при помощи специальных болтов с соответствующим обозначением;
- разные аппараты должны быть подключены к индивидуальным заземляющим устройствам;
- нельзя выполнять заземление нескольких агрегатов, соединяя их последовательно;
- при отсутствии возможности подключения заземления, необходимо обеспечить аварийное защитное отключение.
Согласно правилам электробезопасности, сопротивление заземлителя не должно превышать 5 Ом. Чтобы добиться такого показателя, необходимо обеспечить как можно большую площадь соприкосновения кабеля с землей, а также высокую проводимость тока.
Еще один немаловажный момент при заземлении сварочного оборудования – соединения. Заземлитель крепится к заземляющему устройству при помощи хомутов или сварки. При любых условиях место скрепления должно быть защищено от появления коррозии. Как правило, для этих целей его промазывают смолой.
В целях обеспечения электробезопасности необходимо проводить ежемесячную проверку оборудования на наличие оголенных проводов, замыканий на металлический каркас, повреждения заземляющего контура.
Важно также обратить внимание на возможные замыкания в обмотке трансформатора, безотказность аварийных систем.
Самостоятельное изготовление
После подготовки всех необходимых материалов и выбора подходящего места для обустройства заземления можно переходить к непосредственным операциям по сборке заземляющего контура. На подготовительной стадии нарезаются трубные или другие профильные отрезки, размер которых выбирается на 20-30 см больше расчётного (это нужно для компенсации изгиба вершины заготовки при её вбивании в землю).
Дополнительная информация. Для облегчения забивания таких отрезков рекомендуется заострить их нижний срез посредством болгарки с обрезным диском.
Одновременно с подготовкой точечных штыревых заземлителей начинается этап земляных работ, состоящих в подготовке канавок со скошенными краями (для лучшего удерживания грунта от осыпания).
Порядок производимых при земляных работах операций выглядит следующим образом:
- Сначала подготавливается (расчищается) площадка под будущий контур заземления и делается его разметка;
- Затем по уже нанесённой разметке выкапываются канавки глубиной 70-80 см и шириной порядка 50 см (глубина выбирается из соображения минимальной коррозии металлосвязей);
- После этого нарезанные по длине штыри забиваются в намеченных точках так, чтобы над поверхностью выступало около 20 см (смотрите фото ниже);
Обустройство заземляющего контура
- По завершении монтажа всех вертикальных элементов верхние их части срезаются, а контактные площадки тщательно зачищаются, после чего к ним привариваются металлосвязи;
- После того, как все сварочные швы остынут, они зачищаются болгаркой со шлифовальным диском, а затем окрашиваются специальной защитной краской на основе гудрона;
Обратите внимание! Покраске подвергаются лишь места образования сварных сочленений, наиболее подверженные коррозии.
- Далее от ближайшей к жилому строению точки КЗ прокапывают канавку на ту же глубину, что была вырыта под металлосвязи (её ширина может быть чуть меньше, поскольку соединительная полоса делается цельной, не требующей проведения сварных работ);
- Затем в подготовленную траншею укладывается полоса металла с типоразмером не менее 25х4 мм, которая впоследствии приваривается к штырю или перемычке (металлосвязи);
- На заключительной стадии работ у самой стены дома уже проложенная металлическая полоса поднимается на высоту порядка 200 мм, где к ней на болт или сварку подсоединяется шина (провод), идущая на ГЗШ распределительного щитка (фото ниже).
Ввод заземления в дом
Для подключения готового заземления в действующую цепь электроснабжения потребуется ознакомиться с существующими схемами организации заземления.
Ввод в дом
На шину заземления распределительной системы контур заводится с помощью стальной полосы с типоразмером 24х4 мм или же медной и гибкой проволоки сечением 10 мм². В отдельных случаях, специально оговариваемых в ПУЭ, для этого допускается применять алюминиевый провод сечением 16 мм² (смотрите рисунок ниже).
Схема заведения заземления в щиток
При возможности выбора между предложенными выше вариантами предпочтение отдаётся медному проводу, имеющему наиболее подходящие для выполнения поставленной задачи характеристики.
В заключительной части обзора обратим внимание пользователей на то, что сделать заземляющий контур своими руками не очень просто, поскольку при проведении этих работ необходимо строгое соблюдение требований ПУЭ. Для тех, кто полностью не уверен в своих силах, всегда имеется «запасной» выход – пригласить представителей организации, специализирующейся на изготовлении заземлений.
Монтаж заземлителя
Перед тем как заземлять сварочное оборудование, необходимо выбрать металлические заготовки для защитного контура. При этом нужно исходить из размеров его отдельных элементов, типа грунта и погодных условий конкретной местности.
Основные показатели заземляющего устройства и их зависимость от климатических условий отражены в соответствующих разделах нормативного документа «Правила устройства электроустановок».
Читайте также: Характеристика стали 12х18Н10т и ее применение в промышленности
Типичный заземляющий контур выглядит как равносторонний треугольник, в углах которого располагаются вбитые в землю (не менее чем на 2 м) металлические штыри. Они соединяются друг с другом посредством обвязывания отрезками стальных шин.
Говоря о том, как заземляется сварочное оборудование, важно отметить расположение сварочного контура. Он должен находиться в районе осуществления сварки и соединяться аппаратом при помощи специального отвода, позволяющего ему стыковаться со сварочной клеммой агрегата.
Так же, как и прочие заземляющие устройства, такая система должна иметь сопротивление утечки, установленное на уровне, требуемом нормативными документами. Он не должен превышать максимальных показателей для текущих условий.
Чтобы определить силу сопротивления конструкции, используют омметры – специальные электроприборы. Благодаря им удается вычислить переходное сопротивление звеньев цепи с точностью до доли ома.
Главная задача заземления сварочного оборудования – защита мастера от опасных производственных случаев. Оно защищает от случайной подачи тока на металлический корпус прибора и причинения вреда здоровью человека. Особенно важно озаботиться заземлением при работе во влажных условиях.
От чего зависит контур
Перед началом работы обязательно проводятся замеры и измерение сопротивления контура заземления. Этот показатель зависит от нескольких факторов, в частности:
- Состояние земельного настила;
- Глубина установки заземления;
- Качество грунта и его тип (глина, чернозем, песок и т.д.);
- Количества заземляющих групп и электродов в каждой группе;
- Материала электродов и его характеристик.
В идеале нужно расположить заземлительный контур в черноземе, глинистых грунтах и суглинках. Категорически запрещено монтировать электрическое сопротивление в каменных покровах или скалах, они также проводят ток, и сопротивление у данных материалов очень низкое.
Грунты для заземления
Контроль заземления сварочного оборудования
Правила устройства электроустановок гласят, что для обеспечения безопасных условий работы общее сопротивление заземляющей конструкции не должно превышать 5 Ом.
В таком случае, как заземляется сварочное оборудование? Очень важно учесть вышеупомянутое требование, обеспечить нужный уровень токопроводимости, увеличив при этом площадь соприкосновения проводников с землей.
В реальности же достижение уровня сопротивления заземляющей конструкции 5 Ом и ниже практически невозможно. Поэтому применяются особые методы по его снижению. Как правило, в почву добавляют специальные химические составы.
Схемы подключения
К наиболее распространенным схемам подключения относятся замкнутая треугольная и линейная. Замкнутая система более стабильна в работе, поскольку даже при повреждении одного из горизонтальных заземлителей она продолжит выполнять свою функцию. Линейная в этом смысле проигрывает замкнутой конструкции. Она перестает работать, если повреждена перемычка.
Помимо линейной и треугольной конструкции, могут изготавливаться овальные и прямоугольные защитные устройства, но они менее популярны.
Требования к заземляющей клемме
Говоря о том, как заземляется сварочное оборудование, когда требуется надежный контакт заземляющего устройства с металлической деталью, которая находится в работе, стоит отметить использование заземляющих клемм. Наиболее ходовой вариант – зажимы формата «крокодил».
К клеммам, как и к другим фиксаторам заземляющей системы, предъявляются определенные требования. Так, их проверяют на:
- прочность – зажим должен быть устойчив не только к механическим нагрузкам, но и к температурным изменениям;
- надежность фиксации – клемма должна крепко крепить заземляющий кабель на рабочей заготовке;
- соответствие «крокодила» параметрам сварочного аппарата – он должен выдерживать силу тока до 300 ампер.
Последнему требованию соответствуют зажимы типа «КЗ-300». Они как раз рассчитаны на работу с оборудованием, чья нагрузка доходит до 300 ампер.
Заземляющие клеммы отлично справляются со своей задачей, так как заземление сварочного оборудования непременно требует сочетания прочного соединения элементов системы и минимального сопротивления конструкции.
Защита передвижных установок
Все, что было рассмотрено ранее, традиционно относится к обычному стационарному оборудованию. Иной подход наблюдается при необходимости заземления передвижных электроустановок, для которых выполнение требований по переходному сопротивлению несколько затруднено. В связи с этим ПУЭ допускают повышение его величины до предельного значения, равного 25-ти Омам.
Обратите внимание: В отдельных случаях допускается в качестве заземления для передвижек применять имеющиеся на объекте стационарные ЗУ.
Последнее требование справедливо лишь для установок с автономным питанием, имеющим изолированную от земли нейтраль (в качестве примера может быть приведено ГРПШ).
Этот вид заземляющих устройств традиционно применяется для тех образцов оборудования, которые не являются источниками питания для остальных установок и не склонны к искрообразованию. Другая область их применения – передвижные агрегаты, оснащенные собственными стационарными заземлителями, не используемыми в данный момент. Передвижные установки с автономным питанием из-за возможного образования трущихся сочленений и изолированной от земли нейтрали подлежат регулярному освидетельствованию в части состояния защитной оболочки (изоляционного покрытия).
Заземление автономного сварочного оборудования
Бывают случаи, когда у мастера нет возможности подключить сварочный аппарат к сети, – в таких условиях используются автономные модели. Как правило, их напряжение тока вторичной сети составляет 120 или 240 вольт. Заземление при этом обеспечить бывает нелегко. А нужно ли это делать?
Ответ на этот вопрос зависит от конструкции устройства и условий его использования. Последние можно условно разделить на две группы:
1. При соблюдении всех факторов из этого списка корпус аппарата можно не заземлять, когда:
- сварочный аппарат находится в кузове автомобиля либо трейлера;
- питание от вторичной сети происходит через вилку или кабель;
- розетка оснащена кабелем заземления;
- рама сварочного устройства соединена проводом с рамой транспортного средства.
2. При наличии хотя бы одного фактора из данного списка заземление автономной сварки необходимо:
- питание оборудования идет за счет подключения к проводке здания (например, для аварийного электроснабжения);
- вторичная сеть получает питание напрямую, без использования вилки или кабеля;
- вторичная сеть получает постоянное питание без использования розетки или провода.
Выше мы описали лишь ключевые вопросы, касающиеся того, как заземляется сварочное оборудование автономного типа. Более полную информацию можно получить в нормативной документации по электробезопасности.
Если питание сварки происходит с использованием удлинителей, то важно регулярно проверять их на наличие разрывов и надломов. Из-за того, что такие кабели чаще всего располагаются на полу, они, подвергаясь дополнительной нагрузке, быстрее изнашиваются. С помощью специального тестера легко держать их состояние под контролем и, в случае неисправности, своевременно принять меры по их устранению.
Правильная установка заземляющей системы сварочного аппарата сильно снижает риск получения производственных травм, однако не гарантирует стопроцентной безопасности. Ток проходит по заземляющему контуру, не причиняя при этом вреда, но если человек станет его частью, то он послужит проводником, что чревато неприятными последствиями. Поэтому крайне важно избегать телесного контакта с заземляющей конструкцией, носить средства индивидуальной защиты, а изоляционные перчатки непременно должны быть сухими. Также необходимо контролировать целостность кабелей, горелок и электродержателей.
Выполняя эти рекомендации, можно также избежать удара током от сети. Исправность оборудования во многом снижает производственные риски для мастера.
Периодичность проверки
Для проверки текущего состояния ЗУ согласно требованиям ПУЭ проводятся периодические испытания заземляющих контуров. Они позволяют убедиться в соответствии их параметров (сопротивления стеканию тока, в частности) установленным нормативам.
Дополнительная информация: Для контроля текущего состояния ЗУ используются специальные измерительные приборы, подключаемые к нему по особым схемам.
В ПУЭ также оговаривается, что периодичность проверки (испытаний) действующих систем зависит от класса самого проводимого обследования. Так, визуальные осмотры заземляющих конструкций должны проводиться не реже одного раз в полгода. Если та же процедура сопровождается выборочным вскрытием почвы в вызывающих подозрения местах – проверки проводятся не реже раза в 12 лет. Нормы и сроки проверок для различных конструкций заземляющих устройств могут несколько отличаться от рассмотренных показателей (смотрите монографию Р. Н. Карякина под тем же названием).
В заключение отметим, что после ознакомления с предложенным материалом заинтересованный пользователь сможет четко представить себе, для чего нужно заземление и как оно обустраивается. Знание всех тонкостей этого вопроса поможет ему уберечь себя и своих близких от опасности поражения электрическим током. Кроме того, умение разбираться в них обеспечит сохранность эксплуатируемого на объекте электрооборудования.
Нажмите, пожалуйста, на одну из кнопок, чтобы узнать помогла статья или нет.
Источник https://enersb.ru/elektrooborudovanie/zazemlenie-oborudovaniya-peredvizhnyh-ustanovok/
Источник https://www.gorinkom.ru/elektrika/zazemlenie/zazemlenie-elektroustanovok-kak-ego-delat-pravilno.html
Источник https://lux-stahl.ru/stanki-i-instrumenty/zazemlenie-svarochnogo-oborudovaniya.html