45. Классификация плит балконов и лоджий по способу возведения, конструктивному решению, способу опирания на несущие конструкции и характеру работы.

Содержание

Конструкции подземной части многоэтажных зданий

В последние годы значительное место в работе проектировщиков отводится поискам рациональных конструкций подземной части зданий. И это не случайно, решения подземной части оказывают большое влияние на экономику строительства. Применявшиеся ранее решения отличались большой трудоемкостью и значительными расходами материалов. Достаточно сказать, что до 1960 г. на строительстве пятиэтажных домов (серий I-510 и I-515) расход бетона на фундаменты и стены подвала составлял почти 35% общего расхода бетона, потребного для возведения всего здания.

Новые конструктивные решения подземной части зданий (фундаментов, внутренних и наружных стен) выгодно отличаются от прежних традиционных — они более экономичны и индустриальны.

От правильного решения подземной части здания во многом зависит и общая пространственная жесткость дома панельной конструкции — одна из важнейших проблем крупнопанельного строительства.

1. Совершенствование конструкции фундаментов

Конструкция фундаментов — основного элемента подземной части зданий — долгое время не претерпевала серьезных изменений. Еще до сих пор применяются тяжелые, массивные сборные фундаменты, которые по существу происходят от монолитных лент, как бы механически разрезанных на отдельные элементы. Можно сказать, что в этих конструкциях фундаментов, в отличие от других элементов здания, не использованы возможности получения более рациональных конструктивных форм, которые открывает сборный железобетон по сравнению с монолитным.

Практика проектирования и проведенные в последние годы исследования показывают, что наиболее перспективными в совершенствовании конструкций фундаментов могут быть два направления: более полное использование действительной несущей способности грунтов оснований и поиски новых конструктивных форм самих фундаментов.

Рис. 2.1. Прерывистые фундаменты и график зависимости осадки

Одной из попыток, предпринятой в направлении более эффективного использования несущей способности грунтов, является применение прерывистых фундаментов (рис. 2.1). В основу создания такой конструкции были положены исследования НИИ оснований и подземных сооружений (1958—1960 гг.), которые позволили сделать вывод, что грунты, при фундаментах такой конструкции работают лучше, чем под сплошными ленточными фундаментами. Кроме того, создается возможность несколько увеличить расчетное сопротивление грунтов (примерно на 10%) и тем самым более эффективно использовать их несущую способность. Конструкция прерывистых фундаментов широко применяется сейчас в массовом строительстве, став одной из основных при проектировании фундаментов из сборных железобетонных блоков. Однако практика использования прерывистых фундаментов показала, что эта конструкция не дает значительного повышения экономичности фундаментов, а снижение расхода бетона не превышает 10%.

Значительно более широкие возможности в совершенствовании конструкций фундаментов открывает переход на новую методику проектирования —• методику расчета оснований по деформациям с учетом фактических модулей сжимаемости грунтов. Полное использование несущей способности грунтов возможно в том случае, если расчет их производить по предельным деформациям (по осадкам). Задача заключается в том, чтобы обеспечить равномерную осадку всего сооружения. При изучении действительных качеств грунтов особенно важно знать их фактический модуль сжимаемости. Обычно же при исследованиях грунтов определяется только расчетное сопротивление, т. е. величина давления, которая может быть воспринята грунтами. По этой допускаемой величине давления и подбирается ширина подошвы фундаментов. Однако этот традиционный подход к проектированию фундаментов не отражает действительной несущей способности грунтов и поэтому остаются неиспользованными значительные запасы прочности, имеющиеся в грунтах.

В 1959 г. Моспроектом и НИИ оснований и подземных сооружений была выдвинута идея проектирования фундаментов с учетом фактических модулей сжимаемости грунтов. Опытное проектирование выявило возможность при таком подходе резко уменьшить ширину подошвы фундаментов и получить новую систему «узких» фундаментов или, применительно к пятиэтажным зданиям с продольными несущими стенами и в ряде случаев к девятиэтажным зданиям, перейти по существу к бесфундаментным конструкциям. В процессе проектирования оказалось, что если рассчитывать ленточные фундаменты по деформациям, можно значительно повысить величину расчетного сопротивления основания и уменьшить ширину ленты в 2—3 раза против обычных типовых фундаментов.

Экспериментальное строительство домов с узкими фундаментными лентами, ширина которых определена расчетом основания по деформации с учетом модулей сжимаемости грунтов основания (табл. 2.1), позволило сопоставить фактические осадки здания с расчетными, а также определить деформации оснований.

Рис. 2.2. Графики осадок экспериментальных пятиэтажных домов с узкими фундаментами

В процессе строительства и до последнего времени проводились систематические инструментальные наблюдения за осадками этих зданий. По данным этих наблюдений для каждого экспериментального дома величины осадок во времени представлены на графике (рис. 2.2).

Как видно из представленных графиков, осадки здания на узких фундаментах (а по существу вообще без фундаментов) практически мало отличаются от осадок здания, построенного в тех же грунтовых условиях с обычными фундаментами. Так, абсолютная величина осадок экспериментального корпуса № 18 в районе Фили — Мазилово равна всего-17 мм и лишь на 10% больше, чем в корпусе № 17, имеющем ширину фундаментов, в два раза большую.

Следует напомнить, что давление под подошвой фундамента в корпусе № 18 достигает 4,5 кГ/см 2 , т. е. в 2 раза превышает заданное расчетное сопротивление, а в районе Хорошево — Мневники давление под подошвой узких фундаментов составляет почти 5 кГ/см 2 , т. е. также значительно больше, чем заданное расчетное сопротивление.

Неравномерность величин осадок, замеренных по длине корпусов, не превышает 2—3 мм, т. е. значительно меньше регламентированных нормами. Наблюдения за состоянием конструкций здания не выявили каких-либо деформаций надземной части, что также подтверждает равномерность общей осадки здания.

Таким образом, проведенные эксперименты убедительно показали, с одной стороны, отсутствие пропорциональности между уменьшением ширины фундаментных лент и ростом осадок зданий и, с другой стороны, что особенно важно, полную .возможность уменьшения ширины фундаментных лент при расчете оснований по деформациям. Оценка результатов экспериментального строительства показывает, что применение узких фундаментов позволяет сэкономить 35—40% бетона.

На основе успешного опытного строительства пятиэтажных зданий в настоящее время проводится широкое экспериментальное строительство многоэтажных домов (9 этажей) с узкими фундаментами, размеры которых определены с учетом фактических модулей упругости грунтов.

Отработка нового метода проектирования фундаментов на базе проведения тщательных исследований грунтов позволит почти в 2—3 раза снизить расход материалов на конструкции фундаментов. Для реализации этого метода изыскательским организациям придется определять фактические модули сжимаемости грунтов.

Естественно, нельзя применять узкие фундаменты независимо от конструктивных схем зданий и характера грунтов. Основываясь на опыте экспериментального строительства и на проведенных исследованиях, можно рекомендовать этот вид фундаментов для зданий, обладающих высокой пространственной жесткостью, при строительстве в условиях более или менее однородных грунтов с достаточной несущей способностью.

Второе направление совершенствования фундаментов состоит в поисках рациональных конструкций самих фундаментов.

Рис. 2.3. Фундаменты девятиэтажного панельного дома с поперечными несущими стенами

Основным видом фундаментов для полносборных зданий высотой 9 и 12 этажей являются ленточные сборные фундаменты.

Переход в массовом строительстве на систему с поперечными несущими стенами, расположенными с относительно малым шагом 3—3,3 м, характеризуется значительным уменьшением нагрузок и соответственно облегчением фундаментов. Так, в типовых крупнопанельных домах серий II-57, II-49, 1605 высотой 9 и 12 этажей применяются сборные фундаментные блоки шириной 120 и 160 см, высотой 30 см и длиной до 300 см (рис. 2.3).

Рис. 2.4. Крупноразмерные элементы фундаментов

Тенденцию к укрупнению сборных фундаментов можно видеть на примере использования крупноразмерных фундаментов для панельных зданий с продольными несущими стенами (рис. 2.4). Для необходимого контакта подошвы фундамента с грунтом основания используется песчаная подсыпка толщиной 8—10 см, которая обминается по мере роста нагрузок на фундамент, что исключает вероятность резкой концентрации напряжений в поперечном или продольном сечении фундамента. Песчаная подготовка перед укладкой фундаментных блоков уплотняется площадочными вибраторами. Укрупнение элементов ленточных фундаментов позволяет в 2—3 раза снизить их построечную трудоемкость по сравнению с обычными фундаментными блоками. Расход материалов (стали и бетона) для этих фундаментов практически одинаков.

Важное значение для экономичности сборных фундаментов имеет правильное определение их сортамента, что должно в наибольшей мере приблизить рабочий размер (ширину) блоков к требуемому по расчету. К сожалению, до сих пор этой задаче не уделяется должного внимания. Между тем от рационального проектирования сортамента экономика строительства зависит не в меньшей степени, чем от конструктивного решения.

Сортамент фундаментных блоков построен по принципу подчинения ширины ленты фундамента единому планировочному модулю здания. Градация размеров при этом принимается равной модулю (400 мм) или полумодулю. Такой прием построения сортамента является формальным, так как рабочий размер фундамента обычно не зависит от модульной сетки здания, а жестко установленная градация создает затруднения при подборе фундаментов. Так, например, при переходе от блока Ф-16 к блоку Ф-20 площадь подошвы увеличивается на 25%, а при переходе от Ф-28 к Ф-32 — на 14,3%.

Произвольное назначение градации и числа типоразмеров сортамента, как правило, ведет к значительному перерасходу материалов/

Вместе с тем с помощью математической статистики можно вывести закон распределения расчетных сопротивлений грунтов на основании статистического изучения строительных площадок районов массового строительства.

Закон распределения нагрузок на фундаменты для основных массовых серий типовых проектов также может быть получен статистическим путем. В отличие от предыдущего закона он не имеет четкой математической формы и является функцией величин нагрузок в применяемых проектах. Однако и здесь может быть выведена достаточно четкая зависимость.

На основе этих законов должно производиться проектирование сортамента фундаментных блоков с учетом наименьшего интегрального расхода материалов, трудовых затрат и стоимости.

Серьезной задачей является выбор рациональной конструктивной формы блоков. Попытки перейти на предварительно напряженные, например струнобетонные, сборные фундаментные плиты или на более сложные конструктивные формы, например в виде ребристых плит, не дали положительных результатов.

При применении струнобетонных фундаментов по сравнению с обычными типами фундаментов достигается значительная экономия: стали — почти в 2 раза и бетона — на 30%. В частности, напряженное армирование, погашая главные растягивающие напряжения, позволяет существенно снизить высоту фундаментных блоков и назначить ее из условия прочности на изгиб.

Однако предварительно напряженные фундаментные блоки не получили пока практического осуществления, так как технология их изготовления более сложна и еще не освоена. Увеличение толщины защитных слоев бетона приводит к дополнительному расходу бетона по сравнению с плоскими фундаментными блоками.

Расчеты показывают, что область применения сборных фундаментов, определяемая предельными размерами и несущей способностью блоков, их весом, ограничивается даже при грунтах с высокой несущей способностью зданиями высотой не более 12 этажей. Для зданий большей этажности применяют монолитные ленточные, перекрестные или плитные фундаменты. Однако устройство фундаментов этих типов вследствие высокой трудоемкости противоречит основному принципу массового полносборного домостроения — его индустриальности.

Дальнейшим шагом в совершенствовании конструкций фундаментов стало применение короткосвайных фундаментов.

Для реализации этого решения необходимо было создать такую рациональную конструкцию свайных фундаментов, которая по технико-экономическим показателям была бы лучше ленточных фундаментов даже с минимальной глубиной заложения.

Многочисленные испытания забивных свай различных длин показали, что при заглублении свай в плотные грунты сопротивление грунта под нижними концами свай достигает 80—85% общего сопротивления сваи и примерно в 8 раз больше, чем под глубокими фундаментами равной площади в таких же грунтах.

Следует подчеркнуть, что речь идет, не о повторении традиционных решений свайных фундаментов, а о совершенно новом подходе к проектированию свайных фундаментов в крупнопанельном домостроении.

Читать статью  Дом без фундамента: виды оснований и способы построения

Применение короткосвайных фундаментов для панельных зданий позволяет наиболее кардинально решить одну из важнейших проблем полносборного строительства — увеличить жесткость опорной конструкции здания и тем самым значительно снизить вероятность неравномерных осадок, к которым очень чувствительны конструкции крупнопанельных домов. Наряду с конструктивными преимуществами выполнение нулевого цикла с применением коротких сваи даст и экономические выгоды.

Важное достоинство короткосвайных фундаментов, которое подтверждено практикой строительства, высокая их индустриальность по сравнению с ленточными, особенно при выполнении работ в зимних условиях. Подсчеты показывают, что трудоемкость короткосвайных фундаментов оказывается на 10—30% ниже (см. табл. 2.2), при этом (что очень важно) исключается вероятность промерзания основания здания, последствия которого при пучинистых (глинистых и суглинистых) грунтах опасны для конструкций панельного дома, так как возникающие осадки приводят к деформациям надземных конструкций здания.

Рис. 2.5. Конструкция свайного фундамента со сборным ростверком

Особенность новой конструкции — в отсутствии поперечных несущих конструкций в пределах подполья и в расположении ростверков непосредственно под полом первого этажа (рис. 2.5), что позволило резко уменьшить расход бетона.

Новым является также однорядное размещение свай, расположенных под поперечными несущими стенами с шагом 2—2,5 м. Вместо традиционного монолитного применен сборный железобетонный ростверк (рис. 2.5). Сложнейшая конструктивная задача — создание надежного опирания сборного ростверка на сваи (получающие при забивке неизбежные отклонения от проектного положения как по вертикали, так и по горизонтали) — решена применением сборного оголовка, в котором замоноличивается голова сваи (рис. 2.5). Таким образом, после замоноличивания оголовки создают необходимую «платформу» для опирания сборного ростверка.

Сборные ростверки могут применяться при однорядном или двухрядном шахматном расположении свай.

Работа ростверка в системе панельного дома имеет ряд особенностей. Вследствие чрезвычайно высокой жесткости несущих стен панельного дома по сравнению с жесткостью растверка значение и роль последнего как элемента, распределяющего усилия на сваи и исключающего вероятность их неравномерной осадки, выполняет жесткий вертикальный диск несущих стен. Таким образом, ростверк, строго говоря, перестает выполнять несущие функции и является конструктивным элементом, с помощью которого усилия от панелей стен «перетекают» на сваи. Поэтому сечение ростверка и его армирование определяются по конструктивным соображениям. Так, высоту ростверка для девятиэтажных панельных домов принимают не более 35 см, ширина ростверка может приниматься равной: при однорядном расположении свай (сечением 30×30 см) — 50 см, при двухрядном — расстоянию между продольными осями свай плюс толщина сваи.

Устройство продольных ростверков в плоскостях наружных и внутренних продольных стен не требуется.

Рис. 2.6. Конструкция сваи с забивным трубчатым ростверком

Цокольные панели наружных стен крепятся к торцам поперечного ростверка и сами выполняют роль продольного ростверка.

Экспериментальную проверку в строительстве проходят сваи с забивным трубчатым оголовком, представляющим собой железобетонную трубу длиной 1,5 м (рис. 2.6), которая забивается вслед за предварительно забитой сваей. Трубчатый оголовок соединяется с телом сваи при помощи монолитного оголовка. Устройство трубчатого оголовка позволяет применить сборный ростверк, так как даже при смещении свай от проектного положения надежно обеспечивается опирание сборного ростверка.

Одним из возможных путей дальнейшего распространения сборных железобетонных ростверков является применение так называемых плоских свай. Такие сваи имеют сечение 50×20 см и также обеспечивают с учетом неточностей при забивке возможность опирания сборных ростверков.

Рис. 2.7. Конструкция свайного фундамента без ростверка

Успешно применена в экспериментальном строительстве конструкция свайных фундаментов без ростверка. В этом случае панели первого этажа опираются непосредственно на сваи через сборно-монолитные оголовки (рис. 2.7). Относительно малый шаг свай исключает работу поперечных панелей на изгиб, а также не вызывает опасной концентрации напряжений в местах опирания панелей на оголовки свай. Роль ростверка выполняют панели поперечных стен. Работая по схеме многопролетных балок — стенок, эти панели воспринимают реактивные местные сжимающие нагрузки от свай, передаваемые через свайные оголовки и панели перекрытия технического подполья.

Проведенные в ЦНИИСК им. В. А. Кучеренко в 1968 г. исследования работы такой конструкции показали, что стандартные панели первого этажа в девятиэтажном доме при опирании их на оголовки свай без ростверков, а также панели перекрытия над техническим подпольем не требуют каких-либо усилений.

Экономическая целесообразность применения свайных фундаментов для девятиэтажных панельных домов с несущими поперечными стенами подтверждена и технико-экономическими исследованиями (см. график на рис. 2.8 и табл. 2.2).

Рис. 2.8. График сопоставления стоимости свайных и ленточных фундаментов

На приведенном графике по вертикали отложена стоимость общестроительных работ подземной части в тысячах рублей (без стоимости перекрытия), а по горизонтали — глубина забивки свай в метрах. Наклонные линии характеризуют стоимость подземной части при свайных фундаментах для различной глубины забивки свай; горизонтальными линиями показана стоимость подземной части при ленточных фундаментах в зависимости от глубины заложения фундамента.

Анализ показывает, что если в верхнем слое грунты слабые или насыпные, требующие заложения ленточных фундаментов на глубину, большую, чем предусмотрено типовым проектом, фундаменты из коротких свай оказываются экономичнее ленточных. Если необходимая глубина забивки свай незначительна, свайные фундаменты дешевле ленточных, заложенных на глубину, предусмотренную типовым проектом.

По мере увеличения толщины слабых грунтов стоимость свайных фундаментов повышается в меньшей степени, чем стоимость ленточных, поэтому целесообразность замены ленточных фундаментов свайными возрастает с ухудшением грунтовых условий.

Как показывают данные табл. 2.2, наиболее рациональной из рассмотренных типов свайных фундаментов применительно к девятиэтажным домам является конструкция без ростверков (рис. 2.7).

Для зданий с большими нагрузками на фундаменты, например с широким шагом несущих стен, а также для зданий большой этажности приходится использовать многорядное расположение свай, что, естественно, не дает возможности применить сборные ростверки, так как крайне сложно добиться надежного сопряжения между верхом оголовков свай, расположенных в несколько рядов, и низом сборного ростверка. В этих случаях применяются монолитные железобетонные ростверки. Новым в этом традиционном решении является отказ от срубки верхних концов свай для заделки выпусков арматуры свай в ростверк. Этот процесс отличается большой трудоемкостью, требует много времени и средств и в то же время, как нам представляется, не вызывается конструктивной необходимостью.

В целях снижения трудоемкости и повышения экономической эффективности свайных фундаментов, работающих на вертикальные нагрузки, сопряжение свай с ростверками предложено осуществлять без выпусков арматуры свай. При этом сваи должны заделываться в монолитный ростверк на 10 см, а в случае применения сборных ростверков с оголовками величину заделки голов свай в оголовок следует принимать не менее 20 см.

Практической реализации этого предложения способствовала освоенная московскими строителями срезка бетона свай под определенную проектную отметку. Учитывая, что в жилом многоэтажном панельном доме горизонтальные усилия, действующие на сваи, ничтожно малы по сравнению с вертикальными нагрузками, принятая заделка свай в ростверк вполне достаточна. Такая заделка позволяет воспринять изгибающий момент около 2 Т·м, т. е. почти равный несущей способности на изгиб сваи. Это решение значительно упрощает выполнение свайных фундаментов.

Рис. 2.9. Графики коэффициентов условий работы свай с ростверком

Новым направлением в проектировании свайных фундаментов, которое может дать экономические выгоды, является учет совместной работы ростверка с грунтом. Как показали исследования НИИ оснований и подземных сооружений, а также опыт проектирования, нагрузка на сваю при совместной работе с ростверком, опирающимся на грунт, может быть значительно повышена по сравнению с нагрузкой на одну сваю без учета совместной работы ростверка с грунтом, так как часть нагрузки передается через подошву ростверка (рис. 2.9).

В зависимости от грунтовых условий увеличение несущей способности при включении в работу ростверка может достигать 50%. Экспериментальное строительство домов на свайных фундаментах, запроектированных по такому способу, позволит отработать методику расчета и определить область рационального применения этой конструкции.

Успешный опыт применения короткосвайных фундаментов позволил использовать их в качестве основных решений для крупнопанельных девятиэтажных домов серий II-57, II-49, 1605, I-515, а также для 12-этажных крупноблочных домов серии II-18.

Во всех новых типах крупнопанельных экспериментальных домов повышенной этажности также применены короткосвайные фундаменты — в 17-этажных домах на проспекте Мира, на Смоленском бульваре, в квартале № 42-А Юго-Запада, в 25-этажном доме на проспекте Мира и др. В настоящее время на свайных фундаментах ежегодно возводится в Москве около 500 зданий.

2. Совершенствование конструкций стен подземной части зданий

Стены подземной части выполнялись до последнего времени из массивных бетонных блоков с развитыми цокольными частями. Толщина бетонных блоков стены подвалов принималась согласно установившимся многолетним традициям большей, чем толщина цокольной части стены первого этажа. Такой прием проектирования не вызывался требованиями расчета, но был узаконен с точки зрения «конструктивных соображений». В связи с этим находили массовое применение в московском строительстве (применяются и сейчас в ряде городов страны) бетонные блоки следующей толщины: 58 см — при толщине стены первого этажа 51 см, 78 см — под стену 64 см и 98 см — под стену 78 см. Прочностные качества бетонных блоков использовались здесь на 10—15%.

Рис. 2.10. Конструкция стен подземной части здания

В последние годы стены подземной части зданий с несущими продольными стенами, выполняемыми из кирпича, бетонных блоков или керамзитобетонных панелей, конструируют из тонких бетонных блоков толщиной 38 см (рис. 2.10). В этом случае достигается более полное использование их прочностных качеств; сама конструкция стала логичной — из более прочного материала выполняется стена меньшего сечения, чем опирающаяся на нее стена из менее прочного материала — кирпича или легкого бетона.

Другое прогрессивное направление — укрупнение размеров блоков. В домах с несущими продольными стенами, например серии I-515, начали применять крупные керамзитобетонные блоки весом до 3,5—4 т. В крупнопанельных домах с поперечными несущими стенами серий II-49, II-57 и 1605 подземная часть здания монтируется из крупноразмерных элементов — сборных большеразмерных фундаментов, панелей наружных и внутренних стен размером на конструктивный шаг, панелей перекрытия, перекрывающих целиком конструктивную ячейку.

Рис. 2.11. Конструкция поперечных стен подземной части здания

В пятиэтажных домах с поперечными стенами нашли применение две конструктивные разновидности несущих стен подземной части здания — в виде плоских панелей толщиной 14 см, являющихся по существу продолжением поперечных стен коробки здания (рис. 2.11, а), и в виде железобетонных рам (рис. 2.11, б). Последнее решение оказалось более экономичным по расходу бетона (почти в 2,5 раза). Однако для зданий высотой 9 этажей оно нерационально, так как рост нагрузок превращает такую конструкцию в рамный каркас и приводит к значительному увеличению расхода стали. Поэтому в типовых проектах девятиэтажных панельных домов поперечные несущие конструкции подземной части приняты в виде плоских железобетонных панелей, аналогичных панелям типовых этажей, толщиной 14 см, с необходимыми отверстиями для прохода и пропуска инженерных коммуникаций. Такую конструкцию для панельных домов повышенной этажности следует признать наиболее рациональной.

Наружные стены подземной части зданий выполняются в двух конструктивных вариантах: 1) в виде керамзитобетонных панелей толщиной 34 см, марки 200 (объемным весом 1200 кг/м 3 ), с наружным фактурным слоем толщиной 4 см из бетона, с облицовкой керамической плиткой (дома серии II-57); 2) в виде трехслойных железобетонных панелей толщиной 28 см, с внутренним слоем толщиной 8,5 см, наружным 4,5 см, из бетона марки 200, с утеплителем в виде цементного фибролита (дома серии II-49д).

Вертикальные стыки наружных стеновых панелей подземной части здания выполняются с замоноличиванием конструктивным бетоном марки 200 и устройством металлических связей, которые располагаются в трех уровнях: две связи выполняются в виде петлевых стыков арматуры (рис. 2.11, в), одна — в виде металлических планок, устанавливаемых на болтах, для обеспечения устойчивости и крепления панелей во время монтажа.

Опыт применения наружных стен подземной части зданий приводит к выводу, что с точки зрения требований капитальности и долговечности наружные стены подземной части зданий целесообразно выполнять трехслойными железобетонными. Применение керамзитобетонных панелей может быть оправдано только конъюнктурными соображениями — наличием производственной базы. При этом необходимо создавать наружный бетонный слой толщиной 5—6 см для надежной защиты керамзитобетона от увлажнения и разрушения, т. е. по существу переходить к многослойной конструкции.

Конструирование панелей — решение стыковых соединений и армирование — должно быть подчинено повышению общей продольной жесткости панельного дома.

Повышенная жесткость подземной части здания достигается увеличением толщины внутреннего и наружного слоя железобетонной панели соответственно до 10 и 5 см из бетона марки не ниже 200 и жесткими соединениями панелей между собой и с примыкающими поперечными стенами с помощью рабочих выпусков арматуры (которые должны быть продолжением продольных арматурных стержней панелей), а также замоноличиванием соединений бетоном марки не ниже 200.

Читать статью  Упаковка для постельного белья, пледов и полотенец. Ключевые аспекты и рекомендации

В горизонтальных швах между надземной и подземной частями крупнопанельного здания для обеспечения совместной их работы при возможных неравномерных осадках основания следует предусматривать гидроизоляцию цементным раствором состава 1:3, толщиной 30 мм, с водостойкими добавками. Применение рулонной гидроизоляции в этом случае не допускается.

Значительная продольная жесткость стен подземной части, состоящих из монолитно связанных между собой железобетонных панелей, исключает необходимость устройства железобетонных поясов.

Учитывая, что наружные продольные стены в конструкции дома с поперечными стенами в статическом отношении являются самонесущими, не обязательно предусматривать под ними самостоятельный фундамент; возможно опирание их на выпуски поперечных стен.

3. Некоторые вопросы общей пространственной жесткости панельного дома и неравномерных осадок оснований

Проблема общей пространственной жесткости панельного здания непосредственно связана с решением его подземной части. Конструкция подземной части в совокупности с конструкциями надземной части здания или самостоятельно (в зависимости от конструктивной системы проектируемого здания) должна обеспечивать разность осадок смежных опор в пределах, которые регламентируются условиями их прочности и трещиностойкости.

На первом этапе становления полносборного домостроения рядом специалистов высказывались серьезные опасения о возможных деформациях панельных домов, связанных с неравномерными-осадками грунтов оснований.

Однако практика крупнопанельного строительства в значительной степени опровергла эти опасения. Представляют интерес некоторые результаты наблюдений за осадками панельных домов различных систем, построенных на площадках с разными грунтовыми условиями, в том числе характеризующимися относительно низкой несущей способностью грунтов. Показательно, что речь идет о пятиэтажных домах, построенных в 1959—1962 гг., конструкции которых обладали пониженными характеристиками: прочности и жесткости, в особенности со единения поперечных и продольных стен, что характерно для конструктивных решений панельных домов тех лет.

С целью широкого исследования влияния неравномерной осадки на конструкции зданий различных систем начиная с 1960 г. НИИ оснований и подземных сооружений ведутся наблюдения за панельными домами серии К-7 (несущие конструкции — поперечные тонкостенные балки-стенки, наружные стены — навесные трехслойные железобетонные панели, стыки — без замоноличивания), домами’ с несущими поперечными стенами из ви-брокирпичных панелей серии II-32, крупнопанельными домами с несущими продольными стенами из керамзитобетонных, панелей серии I-515.

Цель этих наблюдений — определить-осадки оснований домов и выявить трещины осадочного происхождения, возникающие в конструкциях зданий, наряду с исследованием влияния жесткости самих зданий на деформацию оснований. Наблюдения велись за значительным количеством зданий, например по серии К-7 — шесть домов, построенных в районе Бутырского хутора, по серии II-32 — три дома, построенных в районе Хорошево — Мневники, и серии I-515 — два дома, построенных в том же районе.

Объекты наблюдений специально были выбраны на площадках с неблагоприятными грунтовыми условиями: грунты основания были представлены разнородными напластованиями — мелкозернистыми водонасыщенными песками с включениями супесей и суглинков, обладающими относительно низкой несущей способностью — до 1,5 кГ/см 2 .

Результаты наблюдений показали, что наибольшая разность осадок смежных опор в домах серии К-7 составила за период строительства 3—4 мм при величине перекоса 1·10 —3 . В домах с поперечными несущими стенами серии II-32 максимальная осадка была равна 12 мм, минимальная — 5 мм, средняя — 8 мм. Прогиб продольных стен составил от 0,15·10 —3 до 0,03·10 —3 . Максимальное значение перегиба 0,25·10 —3 . Такую же примерно величину перегиба имел и дом с продольными несущими стенами серии I-515.

Разность осадок была значительной только в период строительства, когда .жесткость здания не достигала требуемой величины, в связи с тем что стыки здания обладали повышенной податливостью. В конструкциях домов в процессе эксплуатации не было обнаружено сколько-нибудь заметного раскрытия трещин.

Проведенные исследования показали лишний раз способность конструкций панельных домов к перераспределению усилий в случаях появления осадок одной из опор. Следовательно, конструкции панельных домов обладают повышенной жесткостью, не учитываемой существующими методами расчета. Другой вывод состоит в том, что осадки фундаментов крупнопанельных домов за строительный период достигают примерно 70—80% соответствующей полной осадки (даже при глинистых грунтах, где стабилизация осадок продолжается в течение нескольких лет). Иными словами, если технология монтажа здания предусматривает последующее бетонирование стыков между панелями поперечных и продольных стен, то основные осадки зданий произойдут до замоноличивания соединений и, таким образом, в процессе эксплуатации конструкция панельных домов почти не будет испытывать воздействий от последующих неравномерных осадок основания.

С увеличением этажности зданий возрастает и пространственная жесткость конструкций крупнопанельных, блочных и кирпичных домов. Так, расчеты показывают, что жесткость девятиэтажных крупнопанельных домов (серий II-57, II-49) по сравнению с пятиэтажными домами аналогичных типов выше примерно в 3—3,5 раза. Поэтому конструкции домов повышенной этажности более активно сопротивляются неравномерным осадкам.

Для гарантии надежности работы здания при возможных неравномерных осадках основания несущие конструкции должны рассчитываться и разрабатываться с учетом влияния этих осадок (см. главу 8).

При проектировании панельных зданий с легкими навесными наружными стенами, которые не могут воспринимать усилий от неравномерных осадок основания, подземные конструкции необходимо рассчитывать на неравномерные осадки основания без учета статической работы конструкций подземной части.

Таким образом, развитие конструкций фундаментов, как нам представляется, должно идти по следующим направлениям. Основным типом фундаментов должны стать короткосвайные, обладающие серьезными преимуществами перед обычными ленточными фундаментами — более высокой индустриальностью (особенно при производстве работ в зимнее время), меньшим расходом материалов, более низкой стоимостью. Применение короткосвайных фундаментов для панельных домов позволяет наиболее кардинально решить одну из важнейших проблем полносборного строительства — уменьшить вероятность неравномерных осадок. В качестве наиболее рационального типа свайных фундаментов можно рекомендовать конструкцию без ростверков, которая значительно повышает эффективность применения свайных фундаментов.

Наружные стены подземной части зданий целесообразно выполнять в виде трехслойных железобетонных панелей размером на конструктивный модуль, внутренние стены — в виде плоских железобетонных панелей. Соединения между панелями должны выполняться с конструктивным замоноличиванием.

Для ленточных фундаментов основным конструктивным решением останутся сборные железобетонные блоки. Должно получить развитие новое направление проектирования — применение узких фундаментов, основанное на наиболее полном использовании несущих качеств грунтов. Благодаря уменьшению ширины подошвы можно расширить область применения сборных железобетонных фундаментов для зданий повышенной этажности, а также укрупнить размеры блоков, тем самым повысив индустриальность этой конструкции.

45. Классификация плит балконов и лоджий по способу возведения, конструктивному решению, способу опирания на несущие конструкции и характеру работы.

Лоджии бывают встроенные и выносные. По способу возведения: — из сборных плит; — из объемных блоков; — в монолитном исполнении. По конструктивному решению: — плоские многопустотные( сборные плиты лоджий); — плоские сплошные (сборные, монолитные, сборно-монолитные); — ребристые (сборные, монолитные). По способу опирания и характеру работы: — консольные: плиты, защемленные в стене по одной-двум сторонам; — балочные: по двум противоположным сторонам, по трем сторонам. Плиты балконов: — плоские сплошные балочные; — плоские сплошные консольные; — ребристые консольные. Плиты лоджий: — плоские сплошные балочные; — плоские сплошные консольные; — ребристые балочные; — плоские многопустотные балочные. Конструктивные схемы балконов: 1) консольные: — плита балкона защемлена отдельно от плиты перекрытия; — балкон образован за счет консольного выноса плиты перекрытия; 2) пристроенные: -плита опирается на наружные стены и стойки( под стойками устраивается столбчатый фундамент); 3) приставные: — плита опирается на четыре стойки; — на консольных балках; — на кронштейнах. Конструктивные решения лоджий: 1) конструкции встроенный лоджий: — в зданиях с продольными несущими стенами плита лоджии опирается на продольную стену и на выступающие поперечные, в этих стенах наружный бетонный слой должен быть несущим; — в зданиях с поперечными несущими стенами может быть опирание как и в зданиях с продольными несущими стенами, но чаще всего плита лоджии опирается на внутренние несущие стены( в плите лоджии в местах её пересечения с наружной стеной устраиваются утепляющие вкладыши); 2) конструкции приставных лоджий: — могут решаться как балконы; — плита лоджий опирается на несущие стены, приставленные к фасаду(приставные поперечные стены могут опираться на фундамент); — приставные стены лоджий могут быть навесными (стены лоджий крепятся по этажно).

44. Сплошные фундаменты. Фундаменты под колонны

  • прочность,
  • долговечность,
  • устойчивость на опрокидывание и на скольжение,
  • стойкость к воздействию грунтовых вод, хим. и био­л. агрессии
  • индустриальность экономичность.

41. Гидроизоляция фундаментов

Конструкции нулевого цикла гражданских зданий требуют устройства гидроизоляции. Выбор варианта конструктивного решения гидроизоляции зависит от

-характера воздействия грунтовой влаги

-режима расположенных помещений

-водонепроницаемости материалов конструкций подземной части здания.

Влага поступает в фундаментные конструкции через грунт атмосферной влагой или грунтовой водой. Капиллярный подсос влаги вызывает отсырение стен подвала и первого этажа. Преградой этому процессу служит устройство горизонтальной и вертикальной гидроизоляции Для предохранения стен от капиллярной сырости в фундаментах устраивают гидроизоляцию — горизонтальную и вертикальную По методу устройства различают гидроизоляции:

-штукатурную (цементную или асфальтную),

-оклеечную (из рулонных материалов)

-оболочковую (из металла).

При отсутствии в здании подвальной части горизонтальную гидроизоляцию укладывают в уровне цоколя выше отметки уровня поверхности земли, а во внутренних стенах — в уровне обреза фундамента. При наличии подвала прокладывают второй уровень горизонтальной гидроизоляции под его полом. Горизонтальная гидроизоляция выполняется из двух слоев рулонного материала (рубероида на мастике, гидроизола, гидростеклоизола, изопласта и др.) или слоя асфальтобетона, цемента с гидроизоляционными добавками.

Вертикальная гидроизоляция предназначена для защиты стен подвалов. Её конструкция зависит от степени увлажнения грунтов основания. При сухих грунтах ограничиваются двухразовой обмазкой горячим битумом. При влажных грунтах — устраивают влагоустойчивую цементную штукатурку с оклеенной гидроизоляцией рулонными материалами за два раза. Для защиты вертикальной гидроизоляции устанавливают прижимные стенки из кирпича или асбестоцементных листов.

39.Силовые и несиловые воздействия на фундаменты. Требования к проектированию фундаментов.

Фундаменты — это часть здания, расположенная ниже отметки дневной поверхности грунта. Их назначение — передать все нагруз­ки от здания на грунт основания. В случаях, когда под зданием устраивают подвалы, фундаменты выполняют роль ограждающих конструкций подвальных помещений. Долговеч­ность, надежность, прочность и устойчивость здания во многом зависят от качества фундаментов.

Работа фундаментов протекает в сложных условиях. Они подвергаются влиянию разно­образных внешних воздействий, как силовых, так и несиловых.

45. Классификация плит балконов и лоджий по способу возведения, конструктивному решению, способу опирания на несущие конструкции и характеру работы.

1 -вертикальные нагрузки; 2 — горизонтальные силовые воздействия; 3 — отпор грунта; 4 -боковое давление грунта; 5 — силы пучения грунта; 6 — вибрации; 7 — миграция грунтовой влаги; 8 — тепловой поток; 9 — диффузия водяного пара.

Такие силовые воздействия, как нагрузки от массы здания и грунта, отпор грунта, силы пучения, сейсмические удары, вибрация, вызывают появление различного вида сжимающих, сдвигающих и изгибающих напряжений, результатом которых могут быть недопустимые деформации и разрушения.

43. Свайные фундаменты с монолитным и сборным ростверком крупнопанельных зданий. Низкий и высокий ростверк. Безростверковые свайные фундаменты.

Сваи представляют собой стержни, погруженные в грунт ударным или вибрационным способом, ввинчиванием, или бетонируемые на месте, в заранее пробуренных скважинах

Конструкция свай классифицируется

по материалу: железобетонные, бетонные и реже деревянные или металлические

по характеру работы: сваи-стойки передают нагрузку от сооружения нижним концом на практически несжимаемые грунты, висячие сваи передают нагрузку на грунт только боковой поверхностью за счет силы трения, сваи, защемленные в грунте, передают на него нагрузку нижним концом и боковой поверхностью, жесткие сваи с глубиной заложения, м, нижнего конца сваи (h), равной восьми ее диаметрам (сторонам) (d), относятся к жестким, изгибом которых можно пренебречь. гибкие сваи с глубиной заложения

по конструктивному решению

-забивные сваи изготовленные на предприятия стройиндустрии, погружаемые в грунт с помощью механизмов -набивные сваи, выполняемые на месте строительства путем бурения скважин диаметром до 800 мм и последующего заполнения их бетоном -свая-колонна свая, которая одновременно выполняет роль сваи и колонны

Читать статью  Какой фундамент подойдет под газобетонные блоки?

по глубине заложения -короткие (3-6 м) -длинные (более 6 м)

по форме поперечного сечения -прямоугольного (квадратного) сплошного сечения

-прямоугольного (квадратного) с полостями -треугольного, таврового, трапецеидального сплошного сечения -треугольного, таврового, трапецеидального с полостями -кольцевого сечения (сваи-оболочки)

В панельных домах с малым шагом поперечных стен и перекрытиями из панелей размером на комнату принимается наиболее экономичный вариант конструкции — безростверковые свайные фундаменты. При этом роль ростверков выполняют панели, а панели перекрытия в уровне пола первого этажа опираются непосредственно на оголовники сваи (рис. 7). Верхняя часть, частично разрушенная при забивке свай, срезается и усиливается специальными сборными железобетонными оголовниками

40. Глубина заложения фундамента

Существует ряд условий, от которых зависит глубина заложения фундамента. К таким условиям относят:

-вид здания и его конструктивные особенности (наличие подвалов, количество этажей и т. д.);

-величины и характер нагрузок, действующих на фундамент;

-глубины заложения фундаментов примыкающих зданий;

-геологические и гидрогеологические условия площадки;

-возможность пучения грунта при промерзании и осадки при оттаивании

Грунт, являющийся основанием для фундамента дома, должен обладать достаточной прочностью и несжимаемостью. Однако этим требованиям отвечают далеко не все грунты Под внутренние стены отапливаемых помещений глубину промерзания можно в расчет не принимать, при условии, что с момента начала строительства и до заселения здания грунт промерзать не будет (то есть, если строительство осуществляется за один теплый сезон или будут приняты меры против промерзания грунта). Заглубление фундамента ниже глубины сезонного промерзания еще не является гарантией от воздействия морозного пучения грунта, особенно для легких ‘зданий. Оно лишь исключает давление мерзлого грунта на подошву фундамента, сохраняя действие сил морозного пучения на боковые поверхности. Уменьшить это влияние можно несколькими способами: уменьшением боковой поверхности фундаментов; созданием на боковой поверхности скользящего слоя при помощи материала с низким коэффициентом трения; защитой грунта около фундамента от промерзания при помощи «экранов», сочетающихся с защитой от переувлажнения (дренаж, ливневая канализация); приданием фундаменту трапециевидной формы (сужение кверху).

38. Классификация фундаментов по конструктивному типу и форме, по материалу, по заглублению в грунт, по способу возведения, по способу опирания на грунт.

Фундаментные конструкции классифицируют на следующие группы: — ленточные, столбчатые, плитные, коробчатые, свайные.

а) Ленточные фундаменты представляют собой непрерывные ленты (подземные стены) под несущими стенами или каркасом наземной части здания. Ленточные фундаменты устраивают под все капитальные стены, а в некоторых случаях и под колонны. Они представляют собой заглубленные в грунт ленты — стенки из бутовой кладки, бутобетона, бетона или железобетона.

б) отдельно стоящие (столбчатые) Отдельностоящие фундаменты представляют собой отдельные плиты с установленными на них подколонниками или башмаками колонн. Их устраивают для каркасных зданий. Разновидностью отдельностоящих фундаментов являются столбчатые, которые проектируют для малоэтажных зданий при малых нагрузках и прочных основаниях, когда ленточные фундаменты нерациональны.

в) свайные, устраиваемые из свай, погружаемых в грунт; Свайные фундаменты применяют на слабых сжимаемых грунтах, при глубоком залегании прочных материковых пород, больших нагрузках и т. д. В последнее время свайные фундаменты получили широкое распространение для обычных оснований, так как их применение дает значительную экономию объемов земляных работ и затрат бетона.

г)сплошные, состоящие из общей фундаментной плиты, принимающей вес всего здания или сооружения в целом. Сплошные фундаменты могут быть плитные и коробчатые. Сплошные фундаменты применяют для зданий с большими нагрузками или при слабых и неоднородных основаниях. Плитные фундаменты представляют плиту под всем сооружением. Применяются при строительстве многоэтажных зданий, на неравномерно сжимаемых грунтах. Коробчатые фундаменты проектируют для высотных зданий с тяжелыми нагрузками, приходящимися на его подземную часть. Они могут выполняться как в монолитном, так и сборно-монолитном вариантах. По методу возведения фундаменты могут быть индустриальные и неиндустриальные. В массовом строительстве используют индустриальные фундаменты — бетонные и железобетонные сборные, позволяющие ведение работ без ограничения сезона и сокращающие трудозатраты на строительной площадке.

По величине заглубления в грунт фундаменты различают мелкого (менее 2 м) и глубокого (более 2 м) заложения. Большинство гражданских зданий имеет фундаменты мелкого заложения.

В зависимости от работы фундаментов под нагрузкой различают фундаменты жесткие и гибкие. Жесткие работают преимущественно на сжатие. К ним относятся бетонные, бутобетонные, бутовые и кирпичные. К жестким относят все фундаменты, за исключением железобетонных. Гибкие работают в основном на растягивающие и скалывающие усилия. Применение железобетонных фундаментов позволяет резко снизить затраты бетона, но резко увеличивает расход металла. По способу опирания на грунт:столбчатые,ленточные,плитные.

35. Требования к проектированию лестниц.

Лестницы проектируют с соблюдением строительных норм и правил по обеспечению Основные требования, предъявляемые к лестницам: 1)прочность, жесткость. Проверяется расчетом.2)удобство, безопасность при ходьбе. Безопасность и удобство обеспечивается рядом правил: а)обеспечение неутомляемости подъема, обеспечивается размерами ступеней, удобными для постановки ноги. Высоту подступенка принимают 140-170 мм (стандартная – 150 мм), но не более 180 мм и не менее 135 мм. Ширину проступи принимают равной 280-300 мм (стандартная — 300 мм), но не менее 250 мм;б)все ступени в марше должны быть одного размера.в)число подъемов в одном марше не менее 3 (при меньшем легко оступиться) — и не более 18. г)естественное освещение; Лестничные клетки, как правило, должны иметь естественное освещение через окна в наружных стенах. В лестничных клетках нельзя делать какие-либо подсобные помещения или устройства, которые могли бы стеснить проходы или служить источником пожара.д)ограждение (перила) должно иметь высоту не менее 0,9 м.е)поворот у лестницы желательно проектировать левым (при движении по лестнице вверх.3) безопасность эвакуации. а)обеспечивается пропускной способностью лестницы, зависящей от ее ширины и уклона.б)ширина лестничной площадки должна быть не менее ширины лестничного маршав)между маршем и лестницей оставляется зазор не менее 50 мм для пропуска пожарного шланга;г) надежность пожарной безопасности. К лестницам многоэтажных зданий предъявляются дополнительные требования. Они должны быть несгораемыми, иметь предел огнестойкости равный 1,5 часа.

36. Конструкции сборные железобетонных лестниц из крупноразмерных элементов.

Лестницы из крупноразмерных элементов решаются в двух конструктивных вариантах: лестница из сборных маршей и площадок и лестница из маршей с двумя полуплощадками В первом варианте лестничная площадка опирается на продольные стены лестничной клетки. Марши опираются на специальные уступы площадок. Во втором варианте марш с полуплощадками опирается на торцевые стены лестничной клетки. Все элементы сборных лестниц соединяют сваркой стальных закладных деталей. Металлическое ограждение лестниц при ширине марша 1050 мм крепят только к торцевым закладным деталям.

Разрезку лестниц на сборные элементы выбирают в соответствии с конструктивной системой.

В бескаркасных зданиях лестницу в пределах этажа расчленяют на четыре сборных элемента — два марша и две (этажную и промежуточную) лестничные площадки; в каркасных зданиях — на два сборных элемента — марши с полуплощадками.

В кирпичных зданиях применяют ребристые лестничные площадки, опорные рёбра которых входят в гнёзда каменных внутренних стен лестничной клетки.

В крупноблочных зданиях этажную и междуэтажную площадки опирают на консоли в стенах лестничной клетки.

В панельных домах этажные площадки опирают на панели внутренних стен лестничной клетки, а междуэтажные — на консоли в этих панелях.

Лестничные марши применяют двух типов:

ребристой конструкции с фризовыми ступенями — для общественных зданий.

плитной конструкции без фризовых ступеней — являются основным унифицированным решением для кирпичных, крупнопанельных и крупноблочных зданий.

В зависимости от назначения и конструктивного решения элементы лестниц подразделяются на следующие типы:

— лестничные марши (далее — марши): ЛМ — плоские без фризовых ступеней;

ЛМФ — ребристые с фризовыми ступенями;

ЛМП — ребристые с полуплощадками;

— лестничные площадки (далее — площадки): 1ЛП — плоские для маршей типа ЛМ;

2ЛП — ребристые для маршей типа ЛМ;

ЛПФ — ребристые для маршей типа ЛМФ;

ЛПП — ребристые площадки и полуплощадки для маршей типа ЛМП;

— накладные проступи (далее — проступи): 1ЛН — для укладки на нижние и рядовые ступени маршей;

2ЛН — для укладки на площадки и верхние ступени маршей;

— ступени: ЛС — основная; ЛСВ — верхняя фризовая; ЛСН — нижняя фризовая;

37. Незадымляемые лестницы. Лифты. Пандусы.

Пандус — гладкий наклонный эвакуацион­ный проход, обеспечивающий сообщение по­мещений, находящихся на разных уровнях. Пандусы, применяющиеся главным образом в общественных зданиях, отличаются от обыч­ных лестниц более высокой пропускной спо­собностью (почти равной пропускной способ­ности горизонтальных проходов). Пандусам придают уклон от 5 до 12° (1/11—1/5). При больших уклонах пользоваться пандусом трудно из-за скольжения. Пандусы с малым уклоном вызывают большие потери полезной площади здания.

Пандусы могут быть одно- и двухмаршевыми, прямо- и криволинейными в плане. Одномаршевые прямолинейные пандусы образуются наклонными плоскостя­ми, конструктивно связанными с междуэтаж­ными перекрытиями, и состоят из тех же эле­ментов перекрытия (прогоны, балки, насти­лы). Двухмаршевые пандусы имеют косоурные и площадочные балки, по которым укла­дывают сборные железобетонные плиты или монолитный железобетон. Криволинейные пандусы обычно выполняют из монолитного железобетона. Чистый пол пандусов должен иметь нескользкую поверхность (асфальто­вый, цементный, релин, мастичный, рифленая резина и др.).

В многоэтажных здани­ях (более 5 этажей) проектирование лестниц неразрывно связано с устройством лифтовой шахты. Лестнично-лифтовой узел — важней­ший элемент многоэтажного здания. Лифты могут быть периодического или непрерывного действия (патерностеры). В настоящее вре­мя наибольшее распространение получили лифты периодического действия. Важнейшими характеристиками лифтов, влияющими на их производительность, явля­ются грузоподъемность, скорость и ускоре­ние. Лифты устанавливают в жилых зданиях, имеющих шесть и более этажей. В каждой лестничной клетке секционных шести-, девяти­этажных домов обычно устанавливают один лифт, в домах большей этажности — не менее двух лифтов. Необходимо учитывать, что шах­ты лифтов не должны примыкать непосредст­венно к жилым помещениям. Нельзя распола­гать машинное отделение лифтов ни непосред­ственно над и под жилыми помещениями, ни смежно с ними.

Незадымляемые лестницы: 1)лестницы с входом на лестничную клетку с этажа через незадымляемою наружную воздушную зону по открытым переходам2)лестницы с подпором воздуха на лестничную клетку при пожаре.3)лестницы с входом на них на каждом этаже через тамбур-шлюз, в котором постоянно или во время пожара обеспечивается подпор воздуха. незадымляемые лестницы, связана с помещениями многоэтажных зданий через балкон или лоджию.

Выбираем лучший тип фундамента для дома из СИП панелей

выбор фундамента канадского дома

СИП панели

На чтение 3 мин Просмотров 4.8к. Опубликовано 11.09.2020 Обновлено 17.01.2022

Фундамент является одним из наиболее важных элементов дома. От его правильной закладки зависят надежность строения и длительность эксплуатации постройки. В то же время расходы на него составляют, как правило, одну четвертую часть сметы на строительство.

Уменьшить стоимость можно за счет использования облегченных СИП-панелей, существенно уменьшающих вес дома.

Для того чтобы ваше жилище простояло долго, не деформировалось, сохраняло уют и внешнюю привлекательность, необходимо правильно выбрать вид фундамента.

Ведь это основа, на которой возводится каждый дом, и от правильного распределения нагрузки на грунт напрямую зависит стойкость всей остальной конструкции.

выбор фундамента сип дома

Свайный фундамент

Это оптимальный вариант, учитывая незначительный вес строения. Сваи имеют заостренные концы и устанавливаются путем вкручивания и забивания специальными механизмами в грунт. Такой вариант используется при неустойчивых грунтах и строительстве больших зданий. Отличается неустойчивостью к изменениям климата, в частности к перепадам температуры.

К затратной части относится необходимость перекрыть цоколь. Справиться с этим можно дополнительной укладкой СИП-панелей.

Выбираем лучший тип фундамента для дома из СИП панелей

Однако он имеет и существенные преимущества:

свайный фундамент

  • Использование этого вида позволяет строить дома на любой поверхности — поляне возле озера, в лесу, на склоне холма в самые короткие сроки;
  • Не требуется проводить никаких земляных работ, что существенно уменьшает стоимость. Винтовые сваи завинчивают на глубину ниже слоя замерзания.

Столбчатый фундамент

Отличается дешевизной, простотой монтажа, достаточно прочен. Один из самых популярных фундаментов для домов из СИП-панелей.

Обычно его устанавливают на пучинистых грунтах, имеющих большую глубину промерзания.

Столбчатый фундамент

Материалом для столбов могут служить: железобетон, камень, дерево и кирпич.
Его использование позволяет поднять дом, что является очень важным при строительстве зданий в пойме рек.
Недостаток — отсутствие погреба и подвала.

Ленточный фундамент

Ленточные конструкции используются в тех случаях, когда необходимо устроить погреб, гараж или само здание имеет большой вес.

Такой вариант фундамента отличается высокой прочностью и надежен в эксплуатации. Однако стоимость его довольно высокая.

Выбираем лучший тип фундамента для дома из СИП панелей

Для домов из СИП-панелей он использует в тех случаях, когда грунт сухой и непучинистый. Закладывается на глубину порядка 50-70 см.
Фундамент универсален — может иметь любую форму (квадратный, прямоугольный, трапеция и прочие).

Выбираем лучший тип фундамента для дома из СИП панелей

При выборе ленты следует помнить, что срок строительства увеличится на один-два месяца, чтобы предотвратить возможную деформацию из-за усадки.

Плитный фундамент

Это монолитная железобетонная плита, залитая по всей площади будущего здания. Этот фундамент применяется при наличии неравномерного, песчаного или сильно сжимаемого пучинистого грунта.

плитный фундамент под СИП дом

Основа может быть любой формы и подходит для небольших зданий. Кроме этого, ее используют в качестве пола.

Источник https://stroim-domik.ru/article/149-elementy-zdanii-fundamenty/konstrukcii-podzemnoi-casti-mnogoetaznyx-zdanii

Источник https://studfile.net/preview/7653572/page:5/

Источник https://sip-panels.ru/kakoy-fundament-vybrat-dlya-doma-iz-sip-paneley/

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: