Все про провод для заземления: цвет, марки, сечение, как подключить и где лучше использовать
Провод для заземления — неизменный атрибут проводки в домах и квартирах, предназначенный для защиты человека от попадания под действие электрического тока.
Отказ применения заземлителей несет серьезные риски. В случае пробоя изоляции и попадания фазы на металлические элементы человек может оказаться под напряжением. Результатом может стать серьезная травма или даже смерть.
Ниже рассмотрим, как с умом выбрать цвет, тип и сечение провода заземления. Поговорим о принципах подбора изделия для монтажа в частном доме, ванной или квартире.
Основные термины
Для лучшего понимания разберемся с основными терминами, ведь это важно для правильного выбора и монтажа заземляющего проводника.
Рассмотрим базовые определения:
- Заземление — соединение металлических деталей электрической установки или оборудования с заземляющим устройством. Иными словами, это комплекс мероприятий, направленных на повышение безопасности человека при пользовании электрическими приборами.
- Заземляющее устройство представляет собой группу элементов, обеспечивающих отвод напряжения (потенциала) в землю для защиты человека от негативного действия электрического тока. В его состав входит заземлитель и провод или шинка, соединяющая с нетоковедущей частью.
- Заземлитель — конструкция, представляющая собой несколько сваренных металлических шинок, погруженных в землю на определенную глубину для обеспечения быстрого отвода потенциала. Главной характеристикой заземлителя является сопротивление, которое не должно превышать 4 Ом.
- Заземляющий провод — изделие, соединяющее металлическую нетоковедущую часть оборудования с заземлителем. Фиксируется с помощью сварки или болтового соединения. От правильности выбора этой части конструкции напрямую зависит степень безопасности.
- Заземляющая шина — элемент распределительных щитов, предназначенный для подключения PE-проводников, нулевого рабочего провода и заземлителя. Главным отличием от провода являются конструктивные особенности, позволяющие крепить к шине другие заземляющие провода.
Сегодня часто встречается такой термин, как контур заземления. Это название заземлителя, используемое в обиходе. Здесь также подразумевается конструкция, состояния из нескольких электродов или металлических уголков, находящихся в земле и смонтированных в форме треугольника. Именно к этой конструкции подключается заземляющая шинка.
Типы и особенности заземления
При покупке провода для соединения с заземляющим устройством важно знать виды заземления и его назначение.
Всего выделяется два вида:
- Рабочее. Назначение — обеспечить нормальную работу электроустановки. Без выполнения этого условия функционирование сети было бы невозможным по различным причинам. Иными словами, это нормальный режим функционирования оборудования. Пример — заземление нейтрали силовых трансформаторов, чтобы увеличить ток короткого замыкания и повысить чувствительность релейной защиты.
- Защитное. Задача — гарантия безопасности людей от попадания под действие электрического тока в быту или при обслуживании оборудования на ВЛ, подстанция или в других электроустановках. В зависимости о ситуации может предусматриваться для защиты от молнии, импульсного перенапряжения и потенциала, который может появиться на корпусе бытовой или другой техники.
В квартирах и частных коттеджах применяется заземление защитного типа, на котором мы остановимся более подробно.
Принцип построения и назначение защитного заземления
Если говорить простыми словами, защитное заземление формируется следующим образом. Заземляющий провод подключается к нетоковедущей металлической части.
На следующем этапе «земля», подключенная к оборудованию, объединяется, а далее идет отдельным проводом или шинкой к заземляющему устройству.
В случае пробоя напряжения на металлический корпус и прикосновения к нему человека потенциал идет через землю, а не через тело. Благодаря низкому сопротивлению, быстрее срабатывает защит и УЗО.
Для сравнения R заземляющего контура всего 4 Ом или меньше, а человека — более 1000 Ом. По закону Ома мы знаем, что ток всегда идет по пути наименьшего сопротивления.
Таким образом, защитное заземление предназначено для решения таких задач:
- уменьшение разницы потенциалов между заземляемым устройством и иными предметами и защита жизни человека;
- отвод тока в землю и повышение его значений для срабатывания защитных устройств (УЗО, автоматов).
Следовательно, при прокладывании проводника для заземления важно позаботиться о наличии защитных устройств. Последние должны быстро реагировать на утечку или высокие токи, отсекая поврежденный участок. Чем быстрее это произойдет, тем лучше.
Читайте также:
Требования к сечению у заземления
Многие собственники домов и квартир сталкиваются с необходимостью самостоятельно делать заземление. Это объясняется тем, что в старых зданиях до 1998 годов постройки заземлений и, соответственно, шинок для подключения не было вовсе.
Даже если в доме уже есть заземлитель, при выборе провода необходимо выяснить тип системы.
С учетом ПУЭ выделяется четыре схемы заземления:
- TN-S — применение нейтрали и отдельного проводника. Схема актуально для переменного напряжения.
- TN-C — объединение «0» и земли общим проводом. В такой схеме нейтраль идет отдельно, что характерно для старых построек.
- TT — прямая земля на электрооборудование.
- IT — соединение с корпусом с применением сопротивления или изолированием токоведущих проводников.
Больше про системы заземлений https://elektrikexpert.ru/sistemy-zazemlenij.html, их преимущества и недостатки.
Чтобы выбрать корректное сечение, важно учесть еще один момент — тип заземления.
- стационарным (делается без необходимости перемещения, на постоянной основе);
- переносным (можно снимать при необходимости перемещать на другой объект).
В бытовых целях, как правило, применяется первый вариант. Именно на него и будем ориентироваться при выборе сечения (S).
Во избежание ошибок придерживайтесь следующих простых правил:
- Для фазы S до 16 кв. мм заземляющий проводник подбирается аналогичной величины.
- При S у фазы от 16 до 35 кв. мм сечение «земельного» проводника подбирается на 16 кв. мм.
- Если S фазного провода свыше 35 кв. мм, заземлитель должен иметь толщину не меньше половины этого показателя.
Чаще всего в доме или квартире примеряются медные провода с S равным 4 кв. мм. При таких обстоятельствах S заземляющего провода подбирается с таким же параметром.
Если, например, толщина фазы, подходящей к шкафу, составляет 25 кв. мм, оптимальный параметр S — 16 кв. мм. Здесь все просто, поэтому путаницы возникнуть не должно.
Важно запомнить еще ряд правил:
- Для TN-C и TN-C-S нижний порог сечения составляет 10 кв. мм для медного и 16 кв. мм для алюминиевого проводника.
- В квартире или доме достаточно провода с одной жилой.
- Требования к цвету — желто зеленый.
Иногда при расчете сечения заземления применяется специальная формула. В ней учитывается ток КЗ, время срабатывания защиты, вид изоляции, тип прокладки и другие особенности. На практике такой метод применяется редко.
Цвет провода заземления и особенности подключения
Во избежание путаницы важно понимать, какие обозначения необходимо предусмотреть для таких проводов.
На сегодня применяются следующие виды маркировок:
- PE — 0-ые защитные провода и шинки, имеющие расцветку в виде переплетающегося желто зеленого оттенков.
- N — 0-ые провода, обозначаемые голубым цветом (нейтраль).
- PEN — объединение нуля и заземления. Главная часть голубая, на краях совмещение желто-зеленого цвета.
В нашем случае применяется обозначение с соответствующим цветовым исполнением (желтый и зеленый). Таким же образом он обозначается и в трехжильном проводе.
Если под рукой нет провода с необходимым цветом, можно использовать обычную изоленту желтого и зеленого цвета. Все, что требуется — сделать отметки на концах провода.
Заземление (PE) выводится и подключается к заземляющей шине, корпусу или металлической дверце щитка. Нулевой провод (N) соединяется с шинкой нейтрали.
Подробнее про заземление и зануление https://elektrikexpert.ru/zazemlenie-i-zanulenie.html, в чем разница между ними.
Маркировка
Для лучшего понимания поднимем вопрос маркировки изоляции применяемых проводников.
В названии провода могут использоваться следующие обозначения:
- А — алюминиевый сердечник (при отсутствии буквы — медный);
- АС — наличие оплетки из свинца;
- АА — многожильный провод, имеющий алюминиевый сердечник и оплетку из этого же материала;
- Б — защита от коррозии, выполнена из двуслойной стали;
- Г — без оболочки;
- Бн — защита от влаги и стойкость к огню;
- НП — негорючий материал;
- Р — резиновая оболочка;
- В — оболочка из поливинилхлорида;
- К — контрольный кабель и т. д.
На указанную выше маркировку необходимо обращать внимание при выборе провода для заземления в привязке с его сечением (об этом упоминалось выше).
Марки и требования
При покупке кабеля для заземления необходимо всесторонне его изучить на возможность применения в доме, квартире или специальном помещении (к примеру, ванной, сауне и т. д).
Заземляющий проводник может быть с одной жилой или многожильным. Здесь нужно ориентироваться на место монтажа и удобство применения.
Приведем несколько примеров:
- При соединении корпуса с дверцей шкафа необходимо сохранить подвижность, поэтому лучше использовать многожильное изделие. Если установить одножильный проводник, из-за частых сгибаний он быстро повредится.
- Для соединения корпуса электрического мотора, где не нужна подвижность, пригодятся жесткие жилы. Здесь особых требований к гибкости не предъявляется.
- При обустройстве заземления в квартире или доме можно использовать любой из типов проводов с учетом риска его повреждения и удобства прокладки.
В зависимости от типа заземляющая жила может быть из алюминия и меди, идти в качестве отдельного изделия или в составе бухты кабеля, быть с изоляцией или без нее.
Сегодня выделяется несколько основных марок проводов.
NYM
Изделие с медной жилой, промежуточной оболочкой зелено-желтого цвета. Отличается удобством монтажа, применяется для напряжения до 660 В. Рабочая частота 50 Гц.
Количество проводников может быть от одного до пяти с сечением от 1,5 до 6 кв. мм. Номинальный ток определяется рабочим сечением проводника.
Температурный режим работы от -50 до +50 градусов Цельсия. Радиус изгиба не более четырех диаметров кабеля.
Плюсы — стойкость к влаге и огню, гибкость и большой выбор вариантов исполнения.
Минусы — высокая цена и боязнь прямых солнечных лучей.
ВВГ
Кабель с поливинилхлоридной изоляцией, наружной ПВХ-оболочкой и без специального защитного слоя (брони). Бывает одно- или многожильным.
В 3-х, 4-х и 5-ти жильных кабелях может предусматриваться заземление и нейтраль.
Разрешено использование в качестве заземляющего проводника при напряжении до 600 В.
Некоторые типы кабеля предусмотрены для работы на 1000-2500 В. температурный режим работы от -50 до +50 градусов Цельсия.
ПВ3
Провод медный с поливинилхлоридной изоляцией. Отличается высокой гибкостью, что позволяет применять его для заземления разных устройств и механизмов (в том числе в быту).
Изделие устойчиво к влиянию влаги и способно работать в температурном режиме от +60 до -70 градусов Цельсия. Следовательно, его можно применять даже в экстремальных условиях — банях, ванных комнатах и на улице.
ПВ3 не боится плесени и не подвержен огню. При воздействии высокой температуры происходит обычное оплавление оболочки.
ПВ6
Надежное изделие, применяемое для прокладки токоведущих частей и заземления. Во время использования важно избегать попадания прямых лучей солнца и высокой температуры.
Жилы изделия состоят из меди, бывают монопроволочными или многопроволочными. Рабочее напряжение до 1000 В.
Благодаря применению прозрачного пластика, удобнее контролировать исправность устройства.
Цвета исполнения могут быть различными, поэтому выполнять цветовую маркировку необходимо самостоятельно. Для этого можно использовать подход, который упоминался выше — маркировка с помощью желтой и зеленой изоленты.
ESUY
Медный заземляющий кабель с высокой степенью гибкости. Жила изготовлена из тонких проводов. Сверху предусмотрена оплетка высокой прочности. При изготовлении не применяется кремнийорганическая резина.
Изделие имеет высокую стойкость к морозам, прозрачную оболочку и температурный режим работы от -40 до +70 градусов Цельсия.
Выше рассмотрены наиболее популярные марки проводов/кабелей для заземления, но можно задействовать и иные варианты. Главное, чтобы проводник удовлетворял требованиям гибкости и сечения.
Провода для заземления 380 Вольт
При выборе заземляющего провода на 380 В важно придерживаться тех же требований, что рассмотрены выше. Обращайте внимание на тип изоляции, сечение, гибкость, температурный режим работы и другие параметры. Каких-то особых отличий по требованиям между заземлением на 220 или 380 В не предусмотрено.
Если говорить о типе применяемых проводов, рекомендуется применять уже рассмотренные выше марки.
К ним можно добавить провод ПВС 5х6 в двойной круглой изоляции с пятью жилами. Подходит для питания и заземления оборудования напряжением до 660 В.
Читайте также:
Что такое наконечники НШВИ для обжима проводов: размеры, виды, как опрессовать, другие типы ТМЛ, НВИ и НКИ
Несмотря на общие подходы к выбору проводника, некоторые отличия в заземлении между сетями на 220 и 380 В имеются.
В первом случае используется однофазная сеть, а во втором — трехфазная. Следовательно, для сети на 220 В подойдет кабель с тремя проводами (земля, фаза и ноль), а на 380 В — с пятью (три фазы, ноль и заземление).
Что лучше купить для частного дома и ванной
Теперь рассмотрим, как выбрать провод для заземления применительно к конкретному месту установки.
Для дома
При монтаже заземляющей конструкции в частном доме учтите сечение проводки и наличие заземляющего контура. Если заземлитель вкопан в землю, а шинка выведена, остается подобрать правильный кабель.
Обратите внимание на следующие моменты:
- Сечение. Должно подбираться с учетом условий эксплуатации. В большинстве случаев для дома можно использовать провод от 4 кв. мм и толще.
- Если применяется провод сечением 6 кв. мм без изоляции, необходимо отдать предпочтение многожильному проводнику.
- В роли заземлителей рекомендуется использовать стальную арматуру, имеющую диаметр от 16 кв. мм. Допускается применение стального уголка на 50 мм и более.
- После окончания работ важно измерить сопротивление, которое не должно превышать 4 Ом.
При выборе кабеля можно использовать любой из предложенных выше — ВВГ, ПВ-6, NYM, ESUY, ППВ и другие.
Для ванной
Если речь идет о ванной комнате, важно заземлить все металлические элементы. В эту категорию входит корпус металлической ванны, трубопроводы горячего и холодного водоснабжения и другие металлические элементы.
Сечение провода заземления должно быть не менее 2,5 кв. мм, но при использовании более толстого фазного провода необходимо использовать и «землю» на 4 кв. мм.
Провода, которые подключены к металлических элементам, можно вывести на общую шинку, а оттуда направить провод в щиток или к автоматам (должен быть заземляющий провод под болтовое соединение).
Используемый проводник может быть гибким или одножильным в зависимости от особенностей прокладки. Здесь решение принимается на месте.
Важный момент — требование к стойкости кабеля по температуре и влаги. Указанные выше марки проводов в полной мере соответствуют необходимым характеристикам.
Итоги
Теперь вы знаете почти все о проводах для заземления, для чего они используются, как их подбирать и каким кабелям отдать предпочтение.
Помните, что от правильности выбора земельного проводника зависит здоровье и даже жизнь. Ошибки в выборе могут привести к повреждению «земельного» провода и его неспособности выполнить свои функции по отводу тока.
Что такое защитное заземление и как его устраивать. Часть 3.
В брошюре приводятся основные понятия о назначении защитных заземлений в электрических установках переменного тока напряжением до 35 кв и их устройстве. Приводятся краткие сведения по расчету и эксплуатации заземляющих устройств.
Брошюра предназначена для квалифицированных рабочих-элетриков, окончивших 7—10 классов средней школы.
11. ПРОКЛАДКА ЗАЗЕМЛЯЮЩИХ ПРОВОДНИКОВ, СОЕДИНЕНИЯ И ПРИСОЕДИНЕНИЯ
Заземляющие проводники должны обеспечивать безопасность людей, между тем нарушение непрерывности цепи заземления не нарушает нормальной работы установки и может оставаться в течение длительного срока незамеченным. Поэтому для обеспечения надежности заземляющей проводки «Правила» предписывают принимать ряд мер:
1. Во избежание разрыва цепи заземления или зануления в ней не должны устанавливаться рубильники, выключатели или предохранители (за исключением случаев, когда вместе с фазными отключаются заземляющие проводники).
Например, установка выключателя или предохранителя в цепи занулепия (рис. 12) может привести к поражению
Рис. 12. Ток поражения при установке выключателя или предохранителя в нулевом проводе.
Рис. 13. Зануление корпуса светильника.
при прикосновении к зануленному корпусу, даже когда исправна изоляция. Это произойдет, если перегорит вставка предохранителя или будет отключен выключатель.
Как показано на рис. 13, при неправильном присоединении и возможном обрыве заземляющего проводника (отмечено на рисунке) последствия могут быть такими же, как и в случае, приведенном на рис. 12, т. е. корпус светильника получит через нить лампы то же напряжение, что и фазный провод.
В трехпроводной сети с изолированной нейтралью заземление светильников выполняется отдельным проводником (рис. 14).
На рис. 15 показано включение ламповых патронов. Помимо случаев неправильной установки выключателя, здесь могут иметь место неправильные присоединения фазного провода к винтовой гильзе патрона, что не должно допускаться, так как во многих конструкциях гильза недостаточно закрыта от случайного прикосновения.
2. Зануление электроприемников может быть осуществлено одним из следующих способов:
а) отдельно проложенным медным или алюминиевым зануляющим проводником;
б) присоединением к нулевому проводу;
Рис. 14. Заземление корпуса светильника в трехпроводной сети.
Рис. 15. Включение ламповых патронов.
в) присоединением к магистрали зануления полосовой сталью либо с использованием стальных труб электропроводки, металлических оболочек кабелей (при достаточной их проводимости) и т. п.
В связи с возможностью обрыва нулевого провода, из-за чего электроприемники могут остаться незаземленными, «Правила» предписывают устраивать повторные заземления нулевого провода.
Рис. 16. Присоединение заземляющих проводников к магистрали заземления.
Повторные заземления устраиваются на вводах в здания (снаружи или внутри зданий) и воздушных линиях через каждый километр.
Общий вид сети с занулением показан на рис. 17.
3. Заземляющие проводники должны быть защищены от механических и химических воздействий. Механическая прочность обеспечивается соответствующим выбором сечений, а также защитой в местах пересечений в земле с другими коммуникациями (трубопроводы, кабели и т. п.). Защита от химических воздействий может осуществляться соответствующими покрытиями или окраской. С этой
Рис. 17. Общий вид сети с занулением электрооборудования.
целью заземляющие проводники прокладываются па некотором расстоянии от стен (рис. 18).
4. Заземляющие проводники, за исключением стальных труб скрытой проводки, оболочек кабелей в земле и т. п., для возможности осмотра целости проводки должны прокладываться в помещениях открыто; не должна допускаться прокладка их скрыто в фундаментах машин, стенах и
Рис. 18. Прокладка шин заземления по стене.
ругих местах, где осмотр невозможен. Проходы через стены и перекрытия должны выполняться во втулках из листовой стали или отрезках стальных труб; заземляющие проводники должны проходить в них свободно.
5. Открытые заземляющие проводники должны быть окрашены фиолетовый цвет, для того чтобы облегчить распознавание их электротехническим персоналом и обратить внимание прочих лиц на специальное назначение этих проводок (нулевые провода воздушных линий и электропроводок не окрашиваются).
6. Соединения заземляющей проводки должны обеспечивать надежный контакт. Присоединение заземляющих магистралей к заземлителям следует осуществлять в двух местах. Эти присоединения, а также соединения стальных проводников в земле должны осуществляться сваркой внахлестку. Длина нахлестки принимается равной двойной ширине при прямоугольном сечении и 6-кратному диаметру — при круглом (рис. 19).
Места болтовых присоединений должны быть хорошо зачищены и покрыты техническим вазелином. В местах, где возможно попадание влаги, и наружных установках контакты должны быть покрыты смазкой, защищающей их от
Рис. 19. Соединения и ответвления шин заземления.
коррозии (хорошо себя зарекомендовала так называемая «морская смазка» ЛМС-1 заводов нефтяной промышленности) .
Присоединение заземляющих проводников к оборудованию, подвергающемуся частому демонтажу, или на движущихся частях следует выполнять гибкими проводниками.
Места присоединения к трубопроводам должны выбираться с учетом возможности их разъединения при ремонтных работах. Поэтому у водомеров, задвижек и т. п. следует предусматривать обходные соединения.
7. Металлические оболочки кабелей (свинцовые, алюминиевые) должны, иметь надежные соединения по всей длине линии между собой и с корпусами соединительных, концевых и других муфт. На концах линий металлические оболочки и муфты кабелей должны быть соединены гибкими медными проводниками и присоединены к магистрали заземления.
В табл. 9 приведены рекомендованные НИИ кабельной промышленности сечения этих проводников для заземления металлических свинцовых или алюминиевых оболочек кабелей и корпусов кабельных муфт.
Все соединения металлических оболочек кабелей и соединительных муфт (свинцовых или медных) с заземляющими проводниками осуществляются пайкой; для обеспечения прочности припаянные проводники должны быть дополнительно закреплены, например проволочными бандажами. Присоединения к чугунным или стальным защитным корпусам соединительных муфт, а также присоединения к концевым муфтам и воронкам осуществляются при помощи болтов.
Сечения гибких медных заземляющих проводников кабельных линий
Сечение жил кабелей, мм 2 | Сечение медного заземляющего проводника, мм 2 |
---|---|
До 3×10 | 6 |
3×16 | 10 |
3×25 | 10 |
3×35 | 10 |
3×50 | 16 |
3×70 | 16 |
3×95 | 16 |
3×120 | 16 |
3×150 и выше | 25 |
Заземление проводов с металлической оболочкой (СРГ, ТПРФ и т. п.) также выполняется при помощи гибких проводников пайкой. При этом заземляющий проводник предварительно для закрепления наматывается на проводе в два-три витка.
8. Стальные трубы, используемые для заземления, должны иметь надежные соединения. При открытой прокладке могут применяться хорошо затянутые муфты на сурике с контргайкой на стороне длинного участка резьбы (сгон) либо иные конструкции, дающие надежный контакт. При скрытой прокладке должны применяться только муфты на сурике, причем они должны быть дополнительно ‘Приварены с каждой стороны в одной-двух точках.
Если трубы используются для занулений, то даже при открытой прокладке необходимо соединительные муфты дополнительно приваривать к трубам в одной-двух точках.
9. Соединения нулевых проводов воздушных линий допускается производить теми же методами, что и фазных (например, сжимами).
12. ПРИМЕР РАСЧЕТА ЗАЗЕМЛЯЮЩЕГО УСТРОЙСТВА
Рассмотрим следующий пример расчета заземляющего устройства. Заземляющее устройство подстанции требуется выполнить с сопротивлением Rк=4 ом. Грунт в районе подстанции имеет замеренное удельное сопротивление ρ = 0,6·10 4 ом·см. Заземлитель выполняется из уголков 50×50 мм длиной 2,5 м, соединяемых стальными полосами 40×54 мм.
Требуется определить количество уголков и длину стальной полосы.
Вначале определяем приближенно количество уголков и общую длину стальной полосы.
По табл. 3 уголок 50×50 мм имеет сопротивление растеканию
0,00318 ρ = 0,00318·0,6·10 4 = 19,1 ом.
По наведенным справкам (на метеорологической станции) район относится ко II климатической зоне по табл. 4. В соответствии с этой таблицей для учета высыхания или промерзания грунта принимаем для уголков повышающий коэффициент равным 1,8. Тогда сопротивление одного уголка будет равно
19,1·1,8 = 34,4 ом.
Примем расположение уголков возле подстанции в один ряд с расстоянием между ними 3 м (см. рис. 11), т. е. контур заземления будет относительно простым.
Для учета взаимоэкранирования уголков в контуре принимаем коэффициент использования (см. § 9) равным 2 (Выбор коэффициентов использования приведен в специальной литературе и электротехнических справочниках). Таким образом, сопротивление одного уголка в контуре следует принимать равным
34,4·2 = 68,8 ом,
а количество уголков
Таким образом, можно было бы принять для контура 17 уголков, если не учитывать еще сопротивления растеканию полосы как заземлителя. Однако при длине около 48 м, которая требуется для соединения 17 уголков, учет этого сопротивления, как увидим, даст возможность уменьшить их количество. По графику на рис. 10 находим, что сопротивление полосы длиной 48 м равно примерно 2 ом. По табл. 4 принимаем повышающий коэффициент 4 на высыхание или промерзание грунта; коэффициент, учитывающий взаимоэкранирование полосы с трубами, принимаем равным 2,5. Таким образом, сопротивление полосы следует считать равным
2·4·2,5 = 20 ом.
Уголки и полоса представляют собой два параллельно соединенных сопротивления. Их общее сопротивление, т. е. сопротивление контура заземляющего устройства подстанции Rк; определяется из уравнения
где Rуг — общее сопротивление всех уголков;
Rп — сопротивление полосы.
Из этого уравнения находим, что общее сопротивление уголков должно быть равно
Теперь уточняем требуемое количество уголков. Оно равно
Чтобы оставить длину соединительной полосы равной 48 м, удлиняем се на двух углах контура на 4,5 м с каждой стороны.
Фактическое сопротивление заземляющего устройства должно проверяться измерением на объекте. В случае необходимости к контуру присоединяются дополнительные заземлители.
Приведенный выше расчет выполнен исходя из того, что поблизости нет естественных заземлителей (Rест). Если же они имеются, необходимо произвести измерение их сопротивления. Если сопротивление их достаточно мало (4 ом или ниже для данного примера), то устройства искусственных заземлителей не требуется. Если оно слишком велико, то его уменьшают путем добавления искусственных заземлителей.
Допустим, что в рассмотренном выше случае можно использовать имеющийся вблизи естественный заземлитель (водопровод) с сопротивлением 5 ом. В таком случае искусственный заземлитель должен быть выполнен уже не на 4 ом, а только на 20 ом. Его сопротивление подсчитывается по формуле
Дальнейший расчет производится так же, как указано выше.
13. ПРАВИЛЬНАЯ ЭКСПЛУАТАЦИЯ — ОСНОВА БЕЗОПАСНОСТИ
Практика эксплуатации оборудования показывает, что подавляющее большинство несчастных случаев происходит из-за несоблюдения правил устройства, правил эксплуатации и правил техники безопасности.
Правильность устройства заземлений должна тщательно проверяться при их приемке в эксплуатацию после окончания монтажных работ. Должны быть проведены необходимые испытания с целью определения соответствия заземлений «Правилам» и данным проекта. Проверяются сечения, целость и прочность заземляющих проводников, всех соединений и присоединений.
При приемке заземляющих устройств в эксплуатацию должны быть предъявлены: а) исполнительные чертежи и схемы устройства; б) акты на подземные работы; в) протоколы испытаний» [«Правила технической эксплуатации электрических станций и сетей» (ПТЭ), 1953 г., § 858].
В эксплуатации установок должны соблюдаться указанные ниже сроки осмотров и испытаний заземляющих устройств.
Осмотр наружной части заземляющей проводки, проверка надежности присоединения к ней оборудования и состояния пробивных предохранителей должны производиться одновременно с текущими и капитальными ремонтами оборудования (ПТЭ, § 859).
Пробивные предохранители устанавливаются на вторичной обмотке трансформаторов при изолированной нейтрали п вторичном напряжении до 500 в.
В случае повреждения обмоток и попадания высокого напряжения на обмотку низшего напряжения изолирующий промежуток предохранителя пробивается и последняя соединяется с землей через сеть заземления установки.
Измерения сопротивлений заземляющих устройств на электростанциях, подстанциях и линиях электропередачи высокого напряжения с выборочным вскрытием отдельных элементов заземляющего устройства должны производиться не реже 1 раза в 5 лет. Результаты измерений должны оформляться актом (ПТЭ, § 860).
При применении искусственной обработки грунта дли уменьшения сопротивления заземлителей солью или другими веществами этот срок следует сократить примерно до 2 лет.
ПТЭ электроустановок промышленных предприятий (издания 1951 г.) требуют для фабрично-заводских установок производить измерение сопротивления заземляющих устройств и проверять наружные части заземляющей проводки не реже 1 раза в год (для воздушных линий 1 раз в 5 лет), а состояние пробивных предохранителей — ежемесячно.
На каждое отдельное заземляющее устройство должен быть составлен паспорт, содержащий схему устройства, основные технические и расчетные данные, данные о результатах осмотров и испытаний, сведения о произведенных ремонтах и внесенных изменениях (ПТЭ, § 861).
Перед началом ремонтных работ в электрических установках в ряде мест приходится выполнять временные переносные заземления. К этим местам должны быть подведены заземляющие проводники, а на них предусмотрены зачищенные и смазанные вазелином места для присоединения переносных заземляющих и закорачивающих проводников.
Наложение временных заземлений должно производиться с соблюдением требований ПТЭ. Проводники переносных заземлений должны быть из меди, устойчивы по нагреву при коротких замыканиях и иметь сечение не менее 25 мм 2 . Наконечники следует напаивать твердым припоем или наваривать.
В эксплуатации электротехнических установок необходимо прежде всего стремиться к предотвращению замыканий на землю и корпус. Это может быть достигнуто главным образом путем тщательного и своевременного контроля состояния изоляции сети и оборудования. Нарушения изоляции должны устраняться в кратчайший срок.
Статистика электротравматизма показывает, что большое количество несчастных случаев происходит при пользовании переносным электрооборудованием. Поэтому на правильную его эксплуатацию должно быть обращено особое внимание.
К переносному электрооборудованию относятся: электроинструмент (электросверлилки, электромолотки и др.) и электроаппараты производственного назначения, бытовые приборы всякого рода, детские игрушки, лампы и подобные им электроприемники, присоединяемые к источнику тока гибким проводом через штепсельную розетку.
В переносных электроприемниках замыкания на корпус более часты, чем в стационарных установках. Повреждения изоляции этих приемников и гибких проводников возникают довольно часто вследствие постоянных передвижений. Ручные приборы с металлическими рукоятками, например электроинструмент, представляют опасность еще и потому, что они охватываются во время работы руками и при случайном появлении напряжения на их корпусах у работающего может возникнуть судорога, препятствующая разжиманию рук и освобождению от тока без посторонней помощи.
Большое количество случаев электротравматизма при пользовании переносным оборудованием объясняется не только его широким применением в промышленности и быту, но главным образом прямыми нарушениями правил техники безопасности, дефектами конструкции самого оборудования и гибких связей и, наконец, применением всяких устарелых и самодельных устройств.
В условиях производственных помещений или наружных работ, где обычно имеет место повышенная опасность, корпуса переносного оборудования в соответствии с требованиями «Правил» должны быть заземлены, за исключением оборудования, работающего при напряжениях 36 и 12 в. Согласно «Правилам» заземляющий проводник должен находиться в общей оболочке с фазными проводниками и иметь равное с ними сечение (не менее 1,5 мм 2 ), причем должны применяться гибкие проводники. Таким образом,отдельно проложенные заземляющие проводники не допускаются, так как имеется опасность их обрыва.
При хорошо поставленной эксплуатации состояние оборудования и гибкие связи должны подвергаться достаточно частой проверке, в частности после ремонтов. В отношении электроинструмента, вообще говоря, проверку следует делать перед каждой его выдачей.
Неправильное присоединение заземляющих проводников электроинструмента (рис. 20) служило неоднократно причиной несчастных случаев. Ненадежное их присоединение (навеской без закрепления) или совмещение заземляющего проводника с нулевым проводом поэтому не должны допускаться.
Рис. 20. Заземление переносного электроинструмента.
Переносные лампы должны применяться в соответствии с требованиями техники безопасности и не иметь токоведущих частей, доступных прикосновению. Такие лампы не заземляются.
Штепсельные розетки и вилки для переносных электроприемников в производственных условиях должны иметь специальные контакты для присоединения заземляющего проводника (рис. 21). Конструкция такого штепсельного
Рис. 21. Штепсельная вилка с заземляющим контактом.
соединения исключает возможность использования токоведущих контактов в качестве контактов, предназначенных для заземления. Соединение между заземляющими контактами штепселя и розетки устанавливается до того, как войдут в соприкосновение токоведущие контакты; порядок отключения — обратный. Для этой цели заземляющий контакт имеет большую длину, чем токоведущие. Заземленный контакт штепсельной розетки должен быть электрически соединен с ее корпусом, если последний выполнен из металла.
В помещениях жилых домов и общественных зданиях, где полы изготовляются из дерева и других материалов, являющихся хорошей изоляцией, заземление переносного электрооборудования не требуется.
14. ИЗМЕРЕНИЕ СОПРОТИВЛЕНИЯ ЗАЗЕМЛЯЮЩИХ УСТРОЙСТВ
Существует ряд способов измерения сопротивления заземляющих устройств. Ниже приводится описание принципа измерения при помощи одного из широко применяемых в практике приборов — измерителя заземлений завода «Энергоприбор» типа МС-07 (МС-08).
Прибор работает по принципу магнитоэлектрического логометра. Основными деталями прибора являются две
Pис. 22. Принципиальная схема измерителя заземлений завода «Энергоприбор». I1, E1, I2, E2 — обозначения зажимов прибора.
рамки, одна из которых 1—1 включается как амперметр, вторая — 2—2 — как вольтметр. Эти катушки воздействуют на ось прибора в противоположных направлениях. Благодаря такому устройству отклонения стрелки прибора пропорциональны сопротивлению (величине U/I), а шкала прибора градуирована в омах. Источником питания при измерении служит генератор Г постоянного тока, приводимый во вращение от руки. На общей оси с генератором укреплены прерыватель П и выпрямитель Bn
Для измерения сопротивления отдельных заземлителей или сложных заземляющих устройств требуется еще два специальных заземлителя — зонд З и вспомогательный заземлитель В.
Вспомогательный заземлитель создает цепь для измерительного тока через этот заземлитель и испытываемый.
Измерительная цепь проходит от зажима плюс генератора через рамку 1—1, вспомогательный заземлитель, испытываемый заземлитель, прерыватель и генератор. Рамка 1—1 получает постоянный ток от генератора, затем прерыватель П преобразует ток в переменный, который поступает в землю через вспомогательный заземлитель В. В рамку 2—2, включенную между испытываемым заземлителем и зондом, подается выпрямленное через выпрямитель Bn напряжение. Таким образом, благодаря наличию прерывателя и выпрямителя через рамки логометра протекает постоянный ток (сплошные линии), а через землю — переменный (пунктирные линии). Наличие выпрямителя препятствует также попаданию блуждающих токов в рамку 2—2.
Для уменьшения погрешности последовательно с рамкой 2—2 включено добавочное сопротивление равное 150000 ом.
Расстояние между испытываемым заземлнтелем и зондом должно быть не менее: для одиночных заземлителей — 20 м, для заземлителей из нескольких (двух—пяти) труб— 40 м, для сложных заземляющих устройств — не менее 5-кратного значения наибольшей диагонали (D) площади, занимаемой испытываемым заземлителем. Расстояния между вспомогательным и испытываемым заземлениями следует брать не менее 40 м при простых заземлителях и не менее 5D + 40 — при сложных.
Уменьшение указанных расстояний ведет к увеличению погрешности при измерениях. Измерения производят 2— 3 раза и определяют среднее значение.
ЛИТЕРАТУРА
1. Правила устройства электроустановок, Госэнергоиздат, 1957.
2. Правила технической эксплуатации электрических станций и сетей, Госэнергоиздат, 1953.
3. Правила технической эксплуатации электроустановок промышленных предприятий, Госэнергоиздат, 1951.
4. Найфельд М. Р., Защитные заземления в электротехнических установках, Госэнергоиздат, 1959.
„БИБЛИОТЕКА ЭЛЕКТРОМОНТЕРА“
Готовятся к печати
Амосов Б. В.— Устройство и эксплуатация сварочных генераторов и трансформаторов
Боярченков М. А.— Магнитные усилители и их работа в системах автоматики
Ильинский Н. В.— Расчет и выбор пусковых сопротивлений для электродвигателей
Каминский Е. А.— Изоляция оперативных цепей
Каминский Е А.— Как сделать проект простейшей электроустановки
Камнев В. С.— Как работают подшипники электрических машин
Карпов Ф. Ф.— Как проверить допустимость подключения короткозамкнутого электродвигателя к сети
Карпов Ф. Ф.— Как выбрать сечение проводов и кабелей
Константинов Б. А. и Шулятьева Г. Н.— Коэффициент мощности (cos ср) и способы его повышения на промышленных предприятиях
Ларионов В. П.— Грозозащита сооружений и зданий
Лившиц Д. С.— Нагрев проводников и зашита предохранителями в электросетях до 1 000 в
Образцов В. А.— Уход за контактами низковольтных аппаратов
Осколков К. Н. — Электроизмерительные приборы и как ими пользоваться
Ривлин Л. Б.— Как определить неисправность асинхронного электродвигателя
Рябики Б. П.— Скрытые (виды проводок Славенчинский И. С. и ХромченкоЕ. Г.— Пробивка отверстий и борозд в бетоне
Федотов Б. Н.— Схемы включения электрических счетчиков
Харитонов М. Г.— Опыт обслуживания и ремонта КРУ Запорожского завода
Хромчеико Г. Е.— Соединение оконцевание медных и алюминиевых проводов
Черепенин П. Г.— Монтаж асинхронных электродвигателей небольшой мощности
Шапиро Е. А.— Пружины электрических аппаратов
Как подключить заземление.
Здравствуйте, уважаемые читатели сайта sesaga.ru. В этой статье мы будем с Вами разбираться, как подключить заземление. Эта тема довольно-таки обширная и имеет множество нюансов, и здесь так просто не скажешь — делай так или подключай сюда. Поэтому, чтобы Вы понимали меня, а мне было легче Вам объяснить, будет и теория и практика.
Заземление в нашей современной жизни является неотъемлемой частью. Конечно, можно обойтись и без заземления, ведь, сколько мы жили без него. Но, с появлением современной бытовой техники, заземление является просто обязательным условием для защиты человека от поражения электрическим током.
Общие понятия.
Заземление – преднамеренное электрическое соединение какой-либо точки сети, электроустановки или оборудования с заземляющим устройством.
Заземление предназначено для отвода токов утечки, возникающих на корпусе электрооборудования при аварийном режиме работы этого оборудования, и обеспечение условий к немедленному отключению напряжения с поврежденного участка сети путем срабатывания устройств защитного и автоматического отключения.
Например: произошел пробой изоляции между фазой и корпусом электрооборудования — на корпусе появился некоторый потенциал фазы. Если оборудование заземлено, то это напряжение потечет по защитному заземлению, обладающему низким сопротивлением, и даже, если не сработает устройство защитного отключения, то при прикосновении человека к корпусу, ток, который остался на корпусе, будет не опасен для человека. Если же оборудование не заземлено — весь ток потечет через человека.
Заземление состоит из заземлителя и заземляющего проводника, соединяющего заземляющее устройство с заземляемой частью.
Заземлителем является металлический стержень, чаще всего стальной, или другой металлический предмет, имеющий контакт с землей непосредственно или через промежуточную проводящую среду.
Заземляющий проводник – это провод, соединяющий заземляемую часть (корпус оборудования) с заземлителем.
Заземляющее устройство – это совокупность заземлителя и заземляющих проводников.
Немного теории.
Все Вы видели во дворах небольшие кирпичные сооружения, в которые заходят и выходят силовые кабеля — это трансформаторные подстанции (электроустановки). Трансформаторные подстанции служат для приема, преобразования и распределения электрической энергии. Любая подстанция имеет силовой трансформатор, служащий для преобразования напряжения, распределительные устройства и устройства автоматического управления и защиты.
Принимая высоковольтное напряжение сети 6 – 10 kV (киловольт) подстанция преобразует его и передает потребителю — то есть нам. Прием и преобразование напряжения обеспечивает силовой трансформатор, с выхода которого к потребителю уходит трехфазное переменное напряжение 0,4 kV или 400 Вольт.
Для питания домашнего однофазного оборудования (телевизор, холодильник, утюг, компьютер и т.д.) используется одна из трех фаз L1; L2; L3 и нулевой рабочий проводник «N».
Это стандартная схема обеспечения потребителей электрической энергией, на базе которой были разработаны дополнительные схемы, различающиеся по способу подключения защитного заземления, подключения и защиты электрооборудования, а также принятых мер для защиты людей от поражения электрическим током.
Трансформаторная подстанция имеет свой контур заземления, к которому подключены все металлические корпуса оборудования подстанции. Контур заземления представляет собой вбитые в землю металлические стержни, связанные между собой металлической шиной при помощи сварки. Эту шину называют шиной заземления.
Шина заземления заводится в здание подстанции и прокладывается по периметру здания. К ней привариваются болты, к которым уже через заземляющие проводники подключается все оборудование подстанции.
Согласно ПУЭ (Правила Устройства Электроустановок) заземляющий проводник (нулевой защитный) на электрических схемах имеет буквенное обозначение «РЕ» и цветовую маркировку с чередующимися поперечными или продольными полосами желтого и зеленого цветов.
Системы заземления.
Системы заземления различаются по способу заземления нулевого рабочего «N» проводника на вторичной обмотке силового трансформатора и потребителей электрической энергии (двигатель, телевизор, холодильник, компьютер и т.д.), питающихся от этого трансформатора.
Рассмотрим на примере трансформаторной подстанции.
Вторичная обмотка силового трансформатора подстанции имеет три катушки соединенные «звездой», где начала катушек соединяются в общую точку, называемую нейтралью «N», которая непосредственно соединена с заземляющим устройством.
Свободные концы катушек подключаются к проводам трехфазной сети, уходящей к потребителям трехфазной или однофазной электрической энергии. Такое соединение нейтрали называется глухозаземленной и используется в системах заземления типа TN.
Здесь нейтраль «N», или еще ее называют рабочий ноль, выполняет две функции:
1. Совместно с одной из трех фаз образует напряжения 220 Вольт.
2. Выполняет защитную функцию, так как имеет прямой контакт с землей.
На данный момент существует 3 типа систем заземления:
1. TN – система, в которой нейтраль трансформатора заземлена, а открытые проводящие части присоединены к нейтрали;
2. TT — система, в которой нейтраль трансформатора заземлена, а открытые проводящие части заземлены при помощи заземляемого устройства, электрически независимого от заземленной нейтрали трансформатора;
3. IT — система, в которой нейтраль трансформатора изолирована от земли или заземлена через устройства, имеющие большое сопротивление, а открытые проводящие части заземлены.
Все три системы заземления разработаны для защиты людей и электрооборудования от действия электрического тока. Данные системы заземления считаются равноценными для защиты людей, но они не равноценны по способу обеспечения надежности (безотказности, ремонтопригодности) электроснабжения потребителей электрической энергией.
Обозначаются системы заземления двумя буквами.
Первая буква определяет связь нейтрали трансформатора с землей:
T – нейтраль заземлена;
I – нейтраль изолирована от земли.
Вторая буква определяет связь открытых проводящий частей с землей:
T – открытые проводящие части непосредственно заземлены;
N – открытые проводящие части присоединены к глухозаземленной нейтрали трансформатора.
Теперь рассмотрим все системы по порядку.
1. Система заземления TN.
Система «TN» — это система, в которой нейтраль трансформатора заземлена, а открытые проводящие части присоединены к нейтрали посредством нулевых защитных проводников.
Открытая проводящая часть – доступная прикосновению проводящая часть электроустановки (например: корпус бытовых электроприборов), которая в нормальном режиме работы электроустановки не находится под напряжением, но может оказаться под напряжением в случае повреждения изоляции.
Как правило, повреждение изоляции может быть вызвано многими факторами: это и старение оборудования, механические повреждения, длительная эксплуатация при максимальных нагрузках, скопление пыли между корпусом оборудования и токоведущими частями, образование влаги на пыльной поверхности, находящейся рядом с токоведущими частями, климатическое воздействие, заводской брак и т.д.
Так вот, в свою очередь система TN разделяется еще на три подсистемы:
1. TN-C — система, в которой нулевой защитный «РЕ» и нулевой рабочий «N» проводники совмещены в одном проводнике «PEN» на всем протяжении системы;
2. TN-S — система, в которой нулевой защитный «РЕ» и нулевой рабочий «N» проводники разделены на всем протяжении системы;
3. TN-C-S — система, в которой функции нулевого защитного «РЕ» и нулевого рабочего «N» проводников совмещены в одном проводнике в какой-то ее части, начиная от силового трансформатора.
Система TN-С.
Система TN-C — это одна из первых систем заземления, которая еще встречается в старом жилищном фонде построенном до середины 90-х годов, но, не смотря на это, она еще существует и действует. Эта система прокладывается четырехпроводным кабелем, в котором идут 3 фазных провода и 1 нулевой.
Здесь нулевой защитный «РЕ» и нулевой рабочий «N» проводники совмещены в одном проводнике на всем протяжении системы. То есть, для питания электрооборудования и его заземления используется один «PEN» проводник, и это на сегодняшний день является главным недостатком системы TN-C.
В то время практически не было электрооборудования требующего трехпроводное подключение и поэтому к защитному заземлению не придавалось особых требований, и такая система считалась надежной. Но с появлением в нашем быту современного трехпроводного оборудования, где предусмотрен заземляющий проводник «РЕ», система TN-C перестала обеспечивать нужный уровень электробезопасности.
На сегодняшний день, практически вся современная техника питается через импульсные блоки питания, которые не имеют гальванической развязки с сетью 220 Вольт.
Это связано с тем, что в импульсных блоках питания есть помехоподавляющие фильтры, которые предназначены для подавления высокочастотных помех питающей сети 220 Вольт, и которые через развязывающие конденсаторы соединены с корпусом оборудования.
Высокочастотные помехи, возникающие в питающей сети, через развязывающие конденсаторы, провод защитного заземления «PE», трехполюсную вилку и розетку стекают на «землю». Вот поэтому возникает опасность появления фазного напряжения на корпусе оборудования при пробое изоляции между фазой и корпусом или пропадании рабочего нуля «N» при питании современной техники используя систему заземления TN-C не имеющей отдельного проводника защитного заземления «РЕ».
Например: если оторвется или отгорит между этажным и квартирным щитом Ваш рабочий ноль «N», то возникает опасность появления фазового напряжения на корпусе, работающего в данный момент бытового оборудования. И если оно не будет заземлено, то при прикосновении к металлическому неокрашенному корпусу голой рукой, через Вас потечет ток, и Вы получите заряд.
Хотя, благодаря импульсным блокам питания современная техника стала меньше, дешевле и легче, но и, естественно, требования в отношении уровня электробезопасности стали уже выше.
Но, как говорится, спасение утопающих дело рук самих утопающих, и поэтому некоторые умельцы, чтобы обезопасить себя, тянут заземление самостоятельно. Одни садятся на батареи центрального отопления, другие подключаются к корпусу этажного щита, ставят перемычку в розетке, устанавливают УЗО, а некоторые даже делают свой контур заземления.
Например: Вы подключились третьим проводником к корпусу этажного щита и думаете что заземлились. Это большое заблуждение. Вы сделали зануление — и не более того.
Защитное зануление – это преднамеренное электрическое соединение открытых проводящих частей электроустановки (например, корпус оборудования) с глухозаземленной нейтралью генератора или силового трансформатора, выполняемое в целях электробезопасности.
Глухозаземленная нейтраль – это нейтраль трансформатора, присоединенная непосредственно к заземляющему устройству.
Так вот, зануление на корпус этажного щита опасно тем, что в случае обрыва Вашего рабочего нуля «N» питание бытовых приборов, включенных в данный момент в розетку, будет проходить уже через защитный проводник «РЕ».
А это уже неправильная схема питания для бытовых приборов, которая приведет к короткому замыканию и поломке всей техники. Автомат защиты сработает, но только от тока короткого замыкания, который создаст Ваша уже сгоревшая техника. А если в этот момент Вы возьметесь за металлический неокрашенный корпус, то вдобавок, на мгновение, получите заряд бодрости.
Хотя в ПУЭ №7 зануление допускается и считается дополнительной мерой защиты. Но опять же возникает вопрос: в каком месте делать зануление. Здесь решать Вам.
Другой пример.
Вы подключились к батарее центрального отопления, пытаясь таким-образом обмануть счетчик или заземлиться. На Вашем стояке сосед снизу делает ремонт и заменил старые ржавые трубы на пластиковые. Как итог — Вы оказались отрезанными от Вашей мнимой земли. Теперь Вы и соседи сверху будут находиться в постоянной опасности.
Или еще пример.
Вы учли все нюансы и решили заземлиться другим способом. В подвале дома или возле дома вырыли яму, вбили штыри, сделали по всем правилам контур заземления, и заземляющий проводник «РЕ» провели к себе в квартиру. Все, дело сделано, и теперь можно спать спокойно. А вот и нет.
Вдруг Ваш сосед задумал подшутить над Вами из вредности или просто из зависти, что у Вас есть заземление, а у него его нет. Возьмет и отрежет заземляющий проводник. Или ответственный по дому увидит неположенный по проекту провод и уберет его, а Вы живете и знать не знаете, что остались без заземления. К тому же еще заземление должно периодически проверятся специальными приборами. Вы это будете делать? У Вас есть такие приборы?
Как вариант защиты Вы установили в двухпроводную линию УЗО. В принципе, это не такой уж плохой вариант, но тоже имеет свои нюансы.
УЗО срабатывает на токи утечки 10 mA, 30 mA и 300 mA, но для этого ему нужен защитный проводник «РЕ», относительно которого УЗО видит эти токи. В системе TN-C защитного проводника «РЕ» нет, зато он есть в системе TN-S, для которой и было разработано УЗО. На двухпроводной линии УЗО тоже сработает, но через ток утечки, который Вы создадите своим телом.
Возьмем, к примеру, все тот же пробой изоляции на корпус, и при этом, одновременное прикосновение к оголенной батарее центрального отопления.
В системе TN-S ток утечки, возникший на корпусе, сразу пойдет по защитному проводнику «РЕ», и если его порог превысит уставку УЗО, то оно сработает и отключит питание. И даже, когда для УЗО порог будет маленький и оно не сработает — Вы ничего не почувствуете, или Вас будет просто немного пощипывать.
В системе TN-C другой случай. При одновременном касании к корпусу и оголенной батарее центрального отопления через Вас на батарею потечет ток. Если будет стоять обыкновенный автомат, то Вы, в зависимости от силы тока, так и останетесь висеть между двух огней, так как проходящий через Вас ток не будет являться током короткого замыкания. Если же будет стоять УЗО, то по достижению порога уставки оно сработает и отключит питание.
И вот здесь наступает момент истины: УЗО, в системе TN-C, от поражения электрическим током Вас не спасет. Свой заряд бодрости Вы получите. Вопрос только во времени нахождения под действием электрического тока.
В ПУЭ №7 по поводу установки УЗО в систему TN-C сказано:
1.7.80. Не допускается применять УЗО, реагирующие на дифференциальный ток, в четырехпроводных трехфазных цепях (система TN-C). В случае необходимости применения УЗО для защиты отдельных электроприемников, получающих питание от системы TN-C, защитный РЕ-проводник электроприемника должен быть подключен к PEN-проводнику цепи, питающей электроприемник, до защитно-коммутационного аппарата.
Опять возникает вопрос: откуда тянуть защитный проводник. Так что, здесь опять решать Вам.
Поэтому, если Вы живете в домах старой постройки и у Вас двухпроводная сеть, то обезопасив свою квартиру заземлением, как Вам кажется, проблема не решиться, а только ухудшится для Вас или соседей. Проблему двухпроводной сети надо решать коллективно – всем домом:
1. Переделка или изменение системы питания дома с четырехпроводной на пятипроводную линию.
2. Замена старых этажных щитов на новые, рассчитанные для пятипроводной линии.
Но не подумайте, что все так страшно. В этой части статьи я рассказал о возможных ситуациях, которые могут возникнуть с нами при неправильном подключении и использовании защитного заземления. Во второй части статьи мы продолжим разбираться с оставшимися системами заземления.
Удачи!
Источник https://elektrikexpert.ru/provod-dlya-zazemleniya-cvet-marki.html
Источник https://zandz.com/ru/pravila_zazemleniya/chto-takoe-zaschitnoe-zazemlenie-i-kak-ego-ustraivat_3/
Источник https://sesaga.ru/kak-podklyuchit-zazemlenie.html