8 простых способов, которые помогут очистить воду, если нет бытового фильтра

Содержание

8 простых способов, которые помогут очистить воду, если нет бытового фильтра

8 простых способов, которые помогут очистить воду, если нет бытового фильтра

Здоровье

С утверждением о том, что вода является основой жизни и залогом нашего здоровья, не поспоришь. Поэтому очистка воды – важнейший бытовой процесс, которому необходимо уделять должное внимание.

Предлагаем Вашему вниманию обзор наиболее популярных фильтров для очистки воды, которые Вы можете сделать сами в домашних условиях без существенных материальных затрат.

1. Очистка воды кипячением

ocistitivodu1.jpg

Под воздействием высокой температуры происходит стерилизация воды, в которой уничтожаются многие виды опасных бактерий, вирусов и возбудителей паразитарных заболеваний. Кроме того, кипяченая вода становится более мягкой, в ней уменьшается количество свободного хлора и опасных для здоровья элементов и соединений.

Однако получить подобный эффект можно, соблюдая два условия:

  • Кипятить воду следует не менее 15 минут.
  • Емкость, в которой кипятится вода, нельзя накрывать крышкой.

Несмотря на свою простоту и популярность, этот метод имеет существенные недостатки:

    Свежая вода содержит кислород, сероводород, ионы кальция, магния, натрия, калия. Кипячение вытесняет кислород из воды. Ионы вступают между собой в реакцию под воздействием высоких температур, в результате чего образуются соли кальция и других элементов, оседающих в виде накипи на стенках посуды для кипячения воды. В итоге мы получаем не просто «мертвую» воду, но еще и вредную для здоровья: так, соли кальция со временем могут стать одним из пусковых механизмов к образованию камней в почках, развитию артрозов и артритов.

2. Отстаивание воды

ocistitivodu2.jpg

Данный метод очистки воды предполагает отстаивание водопроводной воды в течение 8 – 12 часов (именно столько времени необходимо для испарения хлора и других летучих примесей).

Для ускорения процесса испарения вредных веществ рекомендуется периодически помешивать воду.

Но учтите, что в отстоянной воде сохраняются соли тяжелых металлов, которые оседают на дне, поэтому за час – полтора до окончания очищения не рекомендуется перемешивать воду.

Чтобы на выходе получить воду, очищенную от тяжелых металлов, рекомендуется аккуратно перелить 2/3 жидкости в другую тару: сделать это необходимо так, чтобы осадок остался на дне.

3. Заморозка воды

ocistitivodu3.jpg

Замораживание – это простой и эффективный метод, позволяющий не только очистить воду от солей и иных вредных соединений, но и повысить ее качество, насытив кислородом.

Польза талой воды неоспорима:

  • Выведение из организма холестерина и солей.
  • Укрепление иммунитета и повышение сопротивляемости организма различным заболеваниям.
  • Снижение риска развития аллергии.
  • Омоложение организма.

Как же получить талую воду? Очень просто:

  • Пластиковый контейнер (не пластиковую бутылку) или специальный пластиковый пакет для заморозки не до краев наполните водой, помня о том, что при замораживании вода расширяется. По этой же причине нельзя использовать стеклянную тару, которая может лопнуть под давлением замерзшей воды.
  • Поместите емкость с водой в морозильную камеру до тех пор, пока 2/3 ее части не замерзнут.
  • Слейте из емкости воду, которая не заморозилась, так как именно в ней содержатся соли, тормозящие процесс замораживания.
  • Оставшийся лед разморозьте – это и есть полезная талая вода.

Рекомендуется выпивать порядка 1,5 – 2 л талой воды в день.

4. Очистка воды активированным углем

ocistitivodu4.jpg

Активированный уголь – бюджетное, но при этом эффективное средство для очистки воды, абсорбирующее различные вредные примеси и неприятные запахи.

К слову, именно угольными фильтрами оснащены бытовые фильтры для очистки воды.

Предлагаем изготовить такой надежный фильтр самостоятельно. Для этого Вам понадобятся:

  • Активированный уголь (50 таблеток).
  • Марля (или широкий бинт).
  • Вата.
  • Литровая стеклянная банка.
  • Полуторалитровая пластиковая бутылка из-под воды.

Приступаем к изготовлению трехслойного фильтра:

  1. Отрезаем дно пластиковой бутылки и вставляем ее горлышком вниз в банку.
  2. Отрезаем лоскут марли (20*20 см), в который заворачиваем вату – это и есть первый слой фильтра.
  3. Второй слой состоит из измельченных таблеток активированного угля, который мы заворачиваем в вату.
  4. Третий слой идентичен первому.

Наш фильтр готов! При этом важно, чтобы фильтрующие слои прилегали плотно друг к другу, тогда вода будет очищаться не только от вредных примесей и запахов, а также от механических частиц и ржавчины.

Если же ни времени, ни желания заниматься изготовлением угольного фильтра у Вас нет, предлагаем облегченный вариант очистки воды:

  • Активированный уголь из расчета 1 таблетка на литр воды помещается в марлевый мешочек.
  • Завязанный мешочек опускается в емкость с водой на 6 – 8 часов.
  • Наслаждайтесь очищенной водой!

5. Очистка воды серебром

ocistitivodu5.jpg

Этот способ очистки воды от микробов, вирусов, хлорки и других вредных веществ практиковали многие поколения наших предков.

Очистить воду серебром легче простого – достаточно поместить любое изделие из серебра в емкость с водой на 8 – 10 часов.

Серебро не только обеззараживает воду. Этот металл благоприятно воздействует на иммунитет, улучшает состояние кожи и волос, ускоряет обменные процессы, нормализует работу желудочно-кишечного тракта.

Важно! Не используйте для очистки воды коллоидное (или жидкое) серебро! Оно, накапливаясь в организме, провоцирует отравления и может привести к развитию тяжелого заболевания под названием аргироз, для которого характерно потемнение кожи, которая приобретает темновато-серый оттенок.

6. Очистка воды кремнием

ocistitivodu6.jpg

Процедура очистки воды кремнием проста, но вместе с тем эффективна.

Для ее проведения понадобится камень весом 5 – 10 г, приобрести который можно в аптеке.

Читать статью  Тяжелые металлы — наиболее опасные элементы, способные загрязнять почву

Процедура очистки воды кремнием:

  1. Промойте кремний под теплой проточной водой.
  2. Поместите камень в стеклянную емкость с холодной проточной водой (5 г кремния используйте для очищения 1 л воды).
  3. Емкость накройте марлей, сложенной в два слоя.
  4. Оставьте воду настаиваться на 3 дня: важно, чтобы на емкость с водой не падали прямые солнечные лучи, но и в темном месте жидкость настаивать не рекомендуется.
  5. По истечении трех дней аккуратно перелейте воду в другую емкость, оставив на дне треть отстоянной воды, поскольку этот осадок содержит соли и примеси тяжелых металлов.
  6. Сам камень после каждого применения необходимо тщательно промывать и регулярно очищать щеткой.

Очищенная с помощью кремния вода благоприятно воздействует на иммунную и кровеносную системы, а также обладает омолаживающим эффектом.

Для очищения воды рекомендуется использовать кремний светлого цвета.

7. Очистка воды шунгитом

ocistitivodu7.jpg

Еще один камень, применяемый для очистки воды, — это шунгит, который, как и кремний, можно приобрести в аптеке.

Этот минерал притягивает и абсорбирует соединения хлора, фенола и ацетона, удаляет из воды вредные бактерии и микроорганизмы, что положительно сказывается на работе всего организма.

Для очистки литра воды Вам понадобится 100 г шунгита.

Процедура очистки воды шунгитом:

  1. Тщательно промойте камень.
  2. Поместите шунгит в емкость с водой комнатной температуры и оставьте настаиваться на 3 дня: закрывать емкость не нужно (можно накрыть ее марлей).
  3. Сначала вода приобретет черный оттенок, но постепенно станет прозрачной, а черная минеральная пыль осядет на дно.
  4. Уже через час настаивания вода будет очищена от бактерий и нитратов, а через трое суток приобретет целебные свойства, по крайней мере, так утверждают народные целители.
  5. Слейте настоявшуюся воду, оставив на дне около 3 см воды.

После каждого применения камень следует тщательно мыть, раз в месяц чистить с применением щетки, а раз в полгода – менять на новый.

В отличие от кремниевой, у воды, очищенной посредством шунгита, есть противопоказания:

  • Склонность к тромбообразованию.
  • Онкологические заболевания и склонность к их развитию.
  • Повышенная кислотность.
  • Болезни в стадии обострения.

Поэтому перед применением этого камня в виде очистительного фильтра лучше проконсультироваться с лечащим врачом.

8. Народные средства для очистки воды

ocistitivodu8.jpg

Народная медицина предлагает массу методов очистки воды, мы же рассмотрим наиболее популярные и действенные.

И начнем с яблочного уксуса, чайную ложку которого разводят в литре воды, после чего дают жидкости настояться в течение 2 – 3 часов, чтобы погибли микробы.

Вместо уксуса можно использовать 5-процентный йод, который добавляется в воду из расчета 3 капли йода на литр воды. Дайте воде настояться 2 часа, после чего можно ее употреблять.

Сразу же оговоримся, что вода, очищенная с применением уксуса или йода (а некоторые рекомендуют использовать для очистки эти составляющие одновременно), имеет достаточно неприятный запах и необычный вкус.

Кроме того, следует помнить о том, что избыток йода в организме может привести к сбоям в его работе:

  • Мышечной слабости.
  • Стойкому субфебрилитету на фоне отсутствия признаков какого-либо заболевания.
  • Повышенной потливости.
  • Диарее.
  • Перепадам настроения.

Поэтому с очисткой питьевой воды йодом следует быть аккуратными.

Приятна на запах и вкусна вода, очищенная гроздьями рябины. Кстати, применение рябины по эффективности некоторые эксперты ставят в один ряд с очисткой воды серебром или активированным углем.

Для очистки воды просто опустите тщательно вымытую гроздь спелой рябины в емкость с водой. Природные антибиотики, которыми богато это растение, за 3 часа уничтожат бактерии не хуже, чем хлор.

Вместо гроздьев рябины для очистки воды можно применять шелуху от лука, листья черемухи и ветви можжевельника, но тогда, чтобы очиститься, вода должна настаиваться не менее 12 часов.

Важно! Для усиления очистительного эффекта рекомендуется после настаивания процеживать воду.

Несмотря на свою простоту, народные методы не способны полностью очистить воду от хлорных соединений и микробов, поэтому возлагать на них особые надежды не стоит.

В любом случае из предложенного списка Вы можете выбрать наиболее подходящий для себя вариант очистки, благодаря которому вода станет не только полезной, а и более вкусной!

Способы очищения воды без бытового фильтра


Источники информации:

  • 5 способов очистить воду без фильтра
  • 4 простых метода очистки воды

Железо в сточных водах: очистка и допустимая концентрация

Фото 1

Неочищенные производственные стоки, содержащие немалую часть таблицы Менделеева, опасны для окружающей среды и человека.

Сточные воды поступают в природные водоемы, где соли тяжелых металлов и другие опасные примеси накапливаются в воде и донных отложениях, становясь источником вторичного загрязнения.

Примеси выпадают в осадок в виде карбонатов, сульфатов, частично адсорбируются на минеральных и органических частицах. Концентрация опасных загрязнений в отложениях постепенно нарастает.

Когда адсорбционные свойства осадка исчерпываются, тяжелые металлы концентрируются в воде, что приводит к экологическому кризису.

Разбираемся, почему в промышленных водах много Fe и откуда оно берется, какие ПДК железа установлены для разных водоемов и сточных вод, какие способы очистки наиболее эффективны.

Откуда железо берется?

Сточные воды, содержащие Fe и другие тяжелые металлы, образуются в:

  • металлургической;
  • машиностроительной;
  • металлообрабатывающей;
  • текстильной;
  • лакокрасочной;
  • химической промышленности;
  • при обработке металлических поверхностей;
  • при производстве гальванических элементов;
  • в электронной промышленности;
  • в типографиях;
  • на кожевенных фабриках и в других сферах.

Стоки после обработки на водопроводных очистных сооружениях обычно содержат небольшой объем Fe, не превышающий гигиенические нормы.

Фото 2

В результате прохождения многокилометровой системы подверженных коррозии стальных труб стоки подвергаются вторичному загрязнению. В результате вновь образуется излишне «железистая» вода с желтоватым оттенком.

В воде Fe чаще присутствует в форме бикарбоната, закиси, сульфида. Гидрохимические закономерности приводят к образованию «союзов» железа и марганца – часто при определении одного вещества обнаруживается и другое. Концентрация Fe в СВ зависит от уровня углекислоты – в кислых средах растворимость соединений металла возрастает, а в щелочных – уменьшается.

Соли двухвалентного Fe «коварны», они характеризуются хорошей растворимостью и не задерживаются фильтрами. Поэтому очищенная прозрачная вода на воздухе способна вдруг резко помутнеть, приобретая характерный рыжевато-бурый цвет.

Причина такой трансформации – особенность соединений двухвалентного Fe при взаимодействии с кислородом воздуха быстро окисляться, преобразуясь в нерастворимую форму трехвалентного Fe, вещество с бурой окраской – ржавчину. Сами растворы Fe (II)+ и Fe (III)+ практически бесцветны.

Вода с превышением Fe способна испортить трубопроводы и узлы очистных систем, благоприятна для развития железобактерий, осложняющих работу гидротехнических сооружений.

Продукты жизнедеятельности железобактерий обладают канцерогенными свойствами. Железосодержащие обрастания в полости труб – идеальные условия для развития опасных микроорганизмов (кишечной палочки, патогенных бактерий).

Читать статью  Отруєння важкими металами

Железо – биологически активный элемент, влияющий на интенсивность развития фитопланктона и качественный состав микрофлоры в природных водоемах. Концентрация элемента выше 1-2 мг/л значительно ухудшает органолептические свойства, придавая воде неприятный вяжущий вкус. Вода становится малопригодной и для технических нужд.

Перечисленные факторы ухудшают химические и бактериологические показатели воды. Кроме того, Fe, наряду с другими веществами, повышает жесткость воды.

Фото 3

Учитывая негативные последствия высокой концентрации этого представителя группы тяжелых металлов, важно подобрать оптимальный метод очистки, регулярно проводить химический анализ стоков.

Определение концентрации

Железо образует растворимые соли, при этом в растворе элемент может находиться и в других формах:

  • истинного раствора, аквакомплекса (Fe (II));
  • нерастворенного (Fe (III)) – в виде взвешенных минеральных частиц (железосодержащих минералов, гидрата оксида Fe, соединений Fe, сорбированных на взвесях) размером более 0,45 мкм;
  • коллоидных растворов (тонкодисперсной взвеси), образующихся в результате распада агрегированных частиц под воздействием органики;
  • комплексных соединений;
  • железоорганики;
  • железобактерий.

Учитывая «многоликость» элемента за счет существования в разных формах и состояниях, в лабораториях стоки анализируются на суммарное Fe – «общее железо».

Раздельное определение нерастворимых и растворимых форм двухвалентного и трехвалентного Fe показывает менее точные результаты. Диапазон определяемых концентраций металла – 0,1–1,5 мг/л. Определение возможно и при показателях свыше 1,5 мг/л после разбавления пробы чистой водой.

ПДК

Содержание Fe в воде нормируется в виде ПДК для хозяйственно-питьевого и рыбохозяйственного водопользования.

ПДК общего Fe в питьевой воде установлены СанПиН 1.2.3685-21 и составляют 0,3 мг/дм 3 (лимитирующий показатель вредности – органолептический).

В систему канализации могут быть приняты производственные стоки, которые не вызывают нарушения в работе канализационных сетей и сооружений, не угрожают безопасности их эксплуатации и могут быть обработаны одновременно с городскими сточными водами до установленных требований.

ПДК Fe в воде, предназначенной для отведения в бытовую канализацию, ограничены 5 мг/дм 3 , для водоемов рыбохозяйственного значения еще более жесткие – 0,1 мг/дм 3 . Нормативный показатель установлен приказом Минсельхоза России № 552.

Методы очистки стоков

При выборе технологии очистки стоков от солей тяжелых металлов, в том числе и Fe, приоритет отдается наиболее энергосберегающим методам, а также способам, максимально извлекающим металл для вторичного использования.

Окисление

Окисление, как метод очистки от железа в любых видах, проводится с использованием кислорода воздуха или аэрацией, а также путем введения в раствор окислителей:

  • хлора;
  • перманганата калия;
  • перекиси водорода;
  • озона

с последующим осаждением и фильтрацией.

В качестве вспомогательного способа иногда применяется коагуляция. Реакция окисления Fe – продолжительный процесс, требующий больших емкостей, в которых можно обеспечить требуемое время контакта. Добавки-окислители ускоряют очистку.

Фото 4

Часто применяется хлорирование – метод, при котором очистка воды совмещена с дезинфекцией. Наиболее мощный окислитель – озон. Но аппараты для его производства сложны, дороги, энергозатратны. Кроме того, в концентрированном виде озон ядовит и требует тщательного дозирования для максимально точного соблюдения пропорций.

Частицы окисленного Fe ничтожно малы (1-3 мкм), поэтому долго осаждаются. Для укрупнения и ускорения осаждения «потяжелевших» частиц в раствор вводятся коагулянты – химические вещества, обладающие нужными качествами.

Коагуляция особенно необходима в городских очистных системах, где стоки обычно обрабатываются на песчаных или антрацитовых осветлительных фильтрах, не способных задерживать мелкие примеси.

  1. Если не использовать коагулянты, окисленный металл осаждается слишком долго, а фильтрация некоагулированных частиц затрудняется из-за их малых размеров.
  2. Методы окисления (в меньшей степени это относится к озонированию) бессильны, если в воде содержится органическое Fe.
  3. Железо обычно содержится в воде вместе с марганцем, который вступает в реакции окисления намного сложнее, чем Fe, требуя при этом более высоких значений рН.

Из-за перечисленных минусов технология не подходит для небольших очистных сооружений, работающих на больших скоростях.

Каталитическое окисление с последующей фильтрацией

Технология применяется для очистки стоков в высокопроизводительных компактных системах. Окисление металла происходит на поверхности гранул фильтрующей среды с функциями катализатора. Как правило, фильтрующую засыпку делают из материалов, содержащих диоксид марганца.

Fe в присутствии диоксида марганца быстро окисляется и оседает на фильтрующих гранулах, затем основная масса окисленного Fe при обратной промывке вымывается в дренаж.

Для улучшения качества очистки в воду добавляются дополнительные реагенты-окислители, например, перманганат калия. Последний не только активизирует реакции, но и регенерирует марганец, компенсируя его вымывание с поверхности фильтрующего материала.

Недостатки каталитического окисления:

  1. Метод неэффективен в отношении органического Fe. Кроме того, если в воде присутствует органическое Fe, фильтрующие гранулы со временем покрываются органической пленкой, изолирующей катализатор (диоксид марганца) от воды. В результате каталитическая способность фильтрующей среды становится нулевой. Удалять Fe фильтрующий материал также не сможет, так как таким фильтрам не хватает времени, чтобы произошло естественное окисление.
  2. Если концентрация Fe в воде более 15 мг/л, каталитические системы оказываются неэффективными. Реакции становятся особенно слабыми, если в стоках присутствует марганец.

Ионный обмен

Ионный обмен основан на использовании природных ионитов (цеолитов, сульфоуглей) и синтетических ионообменных смол. Катиониты способны удалять растворенное двухвалентное Fe, присутствующее в СВ практически в любых концентрациях.

Фото 5

Основные преимущества технологии ионного обмена:

  1. Устойчивость к воздействию частого спутника железа – марганца, значительно осложняющего работу окисляющих установок.
  2. Во время ионного обмена удаляются железо и марганец в растворенном состоянии. Необходимость в проведении такого капризного и «грязного» (приходится периодически вымывать ржавчину) этапа, как окисление, отпадает.

Недостатки ионного обмена с использованием искусственных смол:

  1. Использование катионитов целесообразно для очистки чрезмерно жестких стоков, Fe удаляется из воды вместе с жесткостью. Для вод с нормальной жесткостью использование катионообменных смол нерационально.
  2. Смолы «не любят» трехвалентное Fe, которое их «забивает», плохо вымывается. Если в воде присутствует уже окисленное Fe, а также растворенный кислород и другие окислители, способствующие его образованию, метод лучше не использовать.
  3. Если содержание Fe в СВ высоко, возрастает вероятность образования нерастворимого трехвалентного Fe (негативные последствия описаны выше), быстро истощается ионообменная емкость смолы. В результате возникает необходимость частой регенерации материала.
  4. Присутствие в воде органики (в том числе и органического Fe) приводит к быстрому появлению на поверхности смолы органической пленки, которая ухудшает свойства катионита, является питательной средой для бактерий.
Читать статью  Подольская городская детская поликлиника № 3

Мембранные технологии

Метод заключается в пропускании воды под давлением через полупроницаемую мембрану. В результате над мембраной образуется концентрат тяжелых металлов, а под мембраной – очищенный раствор.

Удаление Fe мембранным способом, который предназначен для глубокой доочистки путем удаления бактерий, простейших и вирусов, а также обессоливания (подготовки высококачественной питьевой воды) – не цель, а побочный эффект.

Поэтому использование мембран не является традиционным способом очистки воды от Fe.

  • микрофильтрационные мембраны удаляют уже окисленное трехвалентное Fe;
  • ультра- и нанофильтрационные мембраны удаляют коллоидное и бактериальное Fe;
  • обратноосмотические мембраны удаляют слабо поддающееся другому воздействию растворенное органическое и неорганическое Fe.

Недостатки применения мембран:

  1. Мембраны даже в большей степени, чем фильтрующие гранулы и ионообменные смолы, склонны зарастать органикой и покрываться ржавчиной. Подобные системы нуждаются в тщательном предварительном удалении из исходной воды взвесей и органических загрязнений. Другими словами, мембранные установки применимы там, где в воде не присутствует органическое, коллоидное, бактериальное и трехвалентное Fe, либо эти примеси удалены на первых стадиях очистки.
  2. Мембранные установки не относятся к числу бюджетных, поэтому их использование рентабельно в условиях необходимого достижения высокого качества воды (например, в пищевой промышленности).

Дистилляция

Принцип дистилляции фактически воплощает круговорот воды в природе. При испарении вода практически полностью освобождается от примесей.

Фото 6

В дистилляторах для ускорения естественного процесса испарения применяется нагревание водного раствора до температуры кипения, что приводит к интенсивному парообразованию. При этом механические загрязнения оказываются слишком тяжелыми, чтобы быть подхваченными паром.

Одновременно почти все растворенные соединения (включая соли Fe) за счет увеличения температуры и растущей по мере испарения жидкости концентрации достигают пиковых значений своей растворимости и выпадают в осадок.

Затем пар охлаждается в дистилляторах, конденсируется, вновь превращаясь в воду.

Дистиллированная вода используется в:

  • медицине;
  • фармацевтике;
  • в химических производствах;
  • на промышленных предприятиях.
  • низкая производительность;
  • необходимость частого удаления осадка и накипи;
  • излучение тепла от оборудования;
  • высокий расход электроэнергии.

Выделение железа из кислого раствора

Способ применим для обработки кислых СВ, содержащих ионы двухвалентного Fe, химической и гидрометаллургической промышленности.

Технология выделения железа реализуется так:

  1. Вода подается в реактор с псевдоожиженным слоем с объемной скоростью потока, достаточной для эффективного псевдоожижения и перемешивания.
  2. В реакторе двухвалентное Fe окисляется микробами определенных групп до трехвалентного Fe.
  3. Кислотность среды раствора доводится до значений от 2 до 4.
  4. В концентраторе из раствора осаждаются твердые примеси – соединения серы и трехвалентного Fe.

Очистка стоков на глауконите от катионов железа (II)

Метод сорбции катионов двухвалентного Fe адсорбентом – 95% концентратом глауконита. Катионы Fe извлекают из стоков при высоте поглощающего слоя до 10 см и линейной скорости потока до 5 м/ч. Эффективность извлечения металла экологически чистым и доступным природным адсорбентом достигает максимальных значений – до 99,9%.

Использование фильтров-обезжелезивателей

Безреагентные обезжелезиватели представляют собой баллон с клапаном фильтрации, в который засыпают фильтрующий материал.

Фото 7

Засыпка служит катализатором реакции окисления марганца и железа кислородом, растворенным в воде, или гипохлорит натрия (в этом случае устанавливаются угольные фильтры). Предварительная аэрация улучшает качество окисления, увеличивает период эксплуатации наполнителя.

Использование электролизера

Предварительно очищенная от механических включений сточная жидкость пропускается через электролизер – цилиндрическую электролитическую емкость. Поток последовательно проходит сначала через анодную, а затем через катодную секцию.

Затем вода пропускается через песок. Одновременно происходит отбор выделяющихся газов и периодический смыв с поверхности песчинок налипшего слоя соединений Fe и других примесей.

Окисление в присутствии катализатора

Технология подходит для очистки сточных вод гальванических процессов, стоков линий цинкования и кадмирования.

Метод заключается в одновременном комбинированном окислении озоном и пероксидом водорода в присутствии гетерогенного катализатора пористых керамических материалов (отходов металлургического производства), содержащих переходные металлы и их оксиды.

Расход катализатора составляет 5-10 см 3 на 1 дм 3 сточных вод. Кроме Fe, из стоков эффективно удаляются другие токсичные металлы – кадмий, цинк, а также аммиак.

Интересное видео

Предлагаем посмотреть, как сделать мини-станцию для очистки воды от железа своими руками:

Заключение

В зависимости от окислительно-восстановительного потенциала природных и сточных вод железо существует в виде двух- и трехзарядных ионов, при этом может быть одновременно во многих формах. Поэтому анализ стоков на содержание Fe проводится по показателю «Железо общее».

Технология очистки железосодержащих стоков подбирается по принципу достижения ПДК (с учетом категории приемника стоков) и экономической целесообразности.

Если концентрация Fe в воде стабильно высока, предпочтение отдается методам, направленным на максимальное извлечение металла как вторичного сырья.

Тяжелые металлы в воде

Рассказываем, откуда тяжелые металлы попадают в воду и как поступать, чтобы не пить чай со свинцом.

Причины появления тяжелых металлов в воде

Население планеты и темпы потребления ресурсов растут, промышленность развивается, количество отходов увеличивается, как и размах антропогенного загрязнения окружающей среды. Одно из последствий — попадание солей тяжелых металлов в почву и воду.

Источники:

Источники:

  • Выбросы ТЭС, мусоросжигательных заводов, добывающих и обрабатывающих предприятий, со временем оседающие на почве, откуда они вследствие природного круговорота смываются в водоемы;
  • Сточные воды с металлургических, химических, сельскохозяйственных и горнодобывающих комбинатов, попадающие в реки, озера и водохранилища;
  • Старые трубы и ремонт водопроводных сетей;
  • Латунные фитинги (из сплава меди и цинка).

Конечно, есть и «натуральные» источники вроде извержения вулканов или выветривания горных пород, однако их «вклад» в загрязнение значительно меньше, чем роль технологического прогресса и урбанизации.

Вред для организма человека

Если пить нефильтрованную воду из крана, колодца или скважины, то, несмотря на ее прозрачность и свежесть, можно непреднамеренно «утяжелиться». В зависимости от элемента и его губительного воздействия, ПДК в воде варьируется от 0,0005 мг/л (как у ртути) до 1 мг/л (как у меди и цинка — и вовсе не потому, что они безвредны, а потому, что латунные фитинги очень распространены и этот верхний порог был поднят искусственно).

Влияние тяжелых металлов на биологические процессы в организмах еще недостаточно изучена. Среди последствий звучат заболевания суставов, нарушение работы печени и почек, анемия, нервные расстройства, злокачественные образования.

Одно можно сказать точно: при продолжительном приеме загрязненной воды все эти вещества особенно агрессивно атакуют детский организм, вызывая задержку физического и умственного развития. Не хотелось бы подвергать ни себя, ни своих близких даже призрачному риску, правда?

Источник https://www.infoniac.ru/news/8-prostyh-sposobov-kotorye-pomogut-ochistit-vodu-esli-net-bytovogo-fil-tra.html

Источник https://rcycle.net/stochnye-vody/zhelezo-ochistka-i-dopustimaya-kontsentratsiya

Источник https://www.aquaphor.ru/blog/heavy-metals-in-water

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: